基于用户QoS的Web服务聚类预测

Fu Chen, Shijin Yuan, Bin Mu
{"title":"基于用户QoS的Web服务聚类预测","authors":"Fu Chen, Shijin Yuan, Bin Mu","doi":"10.1109/ICWS.2015.83","DOIUrl":null,"url":null,"abstract":"QoS prediction has become an important step in service recommending and selecting. Most QoS prediction approaches are using collaborative filtering as a prediction technique. But collaborative filtering may suffer from data sparsity problem which degrade the prediction accuracy. In order to alleviate the data sparsity problem of collaborative filtering, we presented a hybrid QoS prediction approach by applying clustering on web services before applying collaborative filtering (named services clustering QoS prediction, SCQP). The clustering process cluster web services in to service clusters in which services have the same physical environment. Then the similarity between users is calculated based on these service clusters instead of individual services. So that there are more information to be used when calculate the similarity and it will contribute to elevate the prediction precision. The experimental results showed that our hybrid approach could not only achieve higher prediction precision, but also reduce the computation time than other collaborative filtering based prediction methods.","PeriodicalId":250871,"journal":{"name":"2015 IEEE International Conference on Web Services","volume":"111 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"User-QoS-Based Web Service Clustering for QoS Prediction\",\"authors\":\"Fu Chen, Shijin Yuan, Bin Mu\",\"doi\":\"10.1109/ICWS.2015.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"QoS prediction has become an important step in service recommending and selecting. Most QoS prediction approaches are using collaborative filtering as a prediction technique. But collaborative filtering may suffer from data sparsity problem which degrade the prediction accuracy. In order to alleviate the data sparsity problem of collaborative filtering, we presented a hybrid QoS prediction approach by applying clustering on web services before applying collaborative filtering (named services clustering QoS prediction, SCQP). The clustering process cluster web services in to service clusters in which services have the same physical environment. Then the similarity between users is calculated based on these service clusters instead of individual services. So that there are more information to be used when calculate the similarity and it will contribute to elevate the prediction precision. The experimental results showed that our hybrid approach could not only achieve higher prediction precision, but also reduce the computation time than other collaborative filtering based prediction methods.\",\"PeriodicalId\":250871,\"journal\":{\"name\":\"2015 IEEE International Conference on Web Services\",\"volume\":\"111 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Web Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS.2015.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2015.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

QoS预测已成为服务推荐和选择的重要步骤。大多数QoS预测方法都使用协同过滤作为预测技术。但协同过滤存在数据稀疏性问题,降低了预测精度。为了缓解协同过滤的数据稀疏性问题,提出了一种在应用协同过滤之前先对web服务进行聚类的混合QoS预测方法(称为服务聚类QoS预测,SCQP)。集群过程将web服务集群到具有相同物理环境的服务集群中。然后基于这些服务集群而不是单个服务计算用户之间的相似度。这样在计算相似度时可以利用更多的信息,有助于提高预测精度。实验结果表明,与其他基于协同过滤的预测方法相比,该方法不仅可以达到更高的预测精度,而且可以减少计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User-QoS-Based Web Service Clustering for QoS Prediction
QoS prediction has become an important step in service recommending and selecting. Most QoS prediction approaches are using collaborative filtering as a prediction technique. But collaborative filtering may suffer from data sparsity problem which degrade the prediction accuracy. In order to alleviate the data sparsity problem of collaborative filtering, we presented a hybrid QoS prediction approach by applying clustering on web services before applying collaborative filtering (named services clustering QoS prediction, SCQP). The clustering process cluster web services in to service clusters in which services have the same physical environment. Then the similarity between users is calculated based on these service clusters instead of individual services. So that there are more information to be used when calculate the similarity and it will contribute to elevate the prediction precision. The experimental results showed that our hybrid approach could not only achieve higher prediction precision, but also reduce the computation time than other collaborative filtering based prediction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信