{"title":"DTI-DeformIt:为扩散张量图像分析任务生成真值验证数据","authors":"Brian G. Booth, G. Hamarneh","doi":"10.1109/ISBI.2014.6867974","DOIUrl":null,"url":null,"abstract":"We propose DTI-DeformIt: a framework to generate realistic synthetic datasets from a smaller number of, or even one, annotated image(s). Our approach extends the DeformIt technique of Hamarneh et al. [1] to handle the deformations and noise conditions of diffusion tensor images. An implementation of our proposed framework is also provided as a free download. We further show that DTI-DeformIt generates images that, according to eigenvector distance, are no different from real images than other real images, making them suitable for machine learning and validation.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"195 1-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks\",\"authors\":\"Brian G. Booth, G. Hamarneh\",\"doi\":\"10.1109/ISBI.2014.6867974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose DTI-DeformIt: a framework to generate realistic synthetic datasets from a smaller number of, or even one, annotated image(s). Our approach extends the DeformIt technique of Hamarneh et al. [1] to handle the deformations and noise conditions of diffusion tensor images. An implementation of our proposed framework is also provided as a free download. We further show that DTI-DeformIt generates images that, according to eigenvector distance, are no different from real images than other real images, making them suitable for machine learning and validation.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"195 1-6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks
We propose DTI-DeformIt: a framework to generate realistic synthetic datasets from a smaller number of, or even one, annotated image(s). Our approach extends the DeformIt technique of Hamarneh et al. [1] to handle the deformations and noise conditions of diffusion tensor images. An implementation of our proposed framework is also provided as a free download. We further show that DTI-DeformIt generates images that, according to eigenvector distance, are no different from real images than other real images, making them suitable for machine learning and validation.