基于虚线段的霍夫变换

Ji Y. Chang, A. Hanson
{"title":"基于虚线段的霍夫变换","authors":"Ji Y. Chang, A. Hanson","doi":"10.1109/ICPR.1994.576226","DOIUrl":null,"url":null,"abstract":"The generalized Hough transform (GHough) is a useful technique for detecting and locating 2D shapes. However, GHough requires a 4D accumulator array to detect objects of unknown scale and orientation. In this paper, we propose an extension of GHough, the virtual line segment-based Hough transform (VHough) that requires much less storage than GHough to accurately determine the scale and orientation of an object instance. VHough takes O(N/sup 2/) time, where N is the number of edge pixels in an image, but requires only 2D accumulator array for the detection of arbitrarily rotated and scaled objects. We present an experimental result to show that VHough is well-suited to recognition tasks when no a priori knowledge about parameters is available.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"22 5-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Virtual line segment-based Hough transform\",\"authors\":\"Ji Y. Chang, A. Hanson\",\"doi\":\"10.1109/ICPR.1994.576226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized Hough transform (GHough) is a useful technique for detecting and locating 2D shapes. However, GHough requires a 4D accumulator array to detect objects of unknown scale and orientation. In this paper, we propose an extension of GHough, the virtual line segment-based Hough transform (VHough) that requires much less storage than GHough to accurately determine the scale and orientation of an object instance. VHough takes O(N/sup 2/) time, where N is the number of edge pixels in an image, but requires only 2D accumulator array for the detection of arbitrarily rotated and scaled objects. We present an experimental result to show that VHough is well-suited to recognition tasks when no a priori knowledge about parameters is available.\",\"PeriodicalId\":312019,\"journal\":{\"name\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"volume\":\"22 5-6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1994.576226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

广义霍夫变换(GHough)是一种检测和定位二维形状的有效方法。然而,GHough需要一个四维累加器阵列来检测未知规模和方向的物体。在本文中,我们提出了一种基于虚拟线段的霍夫变换(VHough)的扩展,它比霍夫变换需要更少的存储空间来准确地确定对象实例的规模和方向。VHough需要O(N/sup 2/)的时间,其中N为图像中边缘像素的个数,但只需要二维累加器阵列来检测任意旋转和缩放的物体。我们提出了一个实验结果,表明VHough非常适合在没有参数先验知识的情况下的识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual line segment-based Hough transform
The generalized Hough transform (GHough) is a useful technique for detecting and locating 2D shapes. However, GHough requires a 4D accumulator array to detect objects of unknown scale and orientation. In this paper, we propose an extension of GHough, the virtual line segment-based Hough transform (VHough) that requires much less storage than GHough to accurately determine the scale and orientation of an object instance. VHough takes O(N/sup 2/) time, where N is the number of edge pixels in an image, but requires only 2D accumulator array for the detection of arbitrarily rotated and scaled objects. We present an experimental result to show that VHough is well-suited to recognition tasks when no a priori knowledge about parameters is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信