带有兴趣链接的Web文档聚类

Zifeng Cui, Baowen Xu, Weifeng Zhang, J. Xu
{"title":"带有兴趣链接的Web文档聚类","authors":"Zifeng Cui, Baowen Xu, Weifeng Zhang, J. Xu","doi":"10.1109/SOSE.2005.39","DOIUrl":null,"url":null,"abstract":"Web documents clustering is a kind of effective Web mining technique. This paper proposes a novel Web documents clustering algorithm from the perspective of Web usage through analyzing WWW cache, in which Web documents reflect user's recent interests. According to the rich semantic information embedded in hyperlinks in Web documents, we first extracts hyperlinks from Web documents and the Web documents in WWW cache is modeled as an undirected Web graph in our approach. Then the clustering algorithm based on the Web graph model is given. Finally, Experimental results verify that the algorithm is efficient and feasible.","PeriodicalId":229065,"journal":{"name":"IEEE International Workshop on Service-Oriented System Engineering (SOSE'05)","volume":"14 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Web documents clustering with interest links\",\"authors\":\"Zifeng Cui, Baowen Xu, Weifeng Zhang, J. Xu\",\"doi\":\"10.1109/SOSE.2005.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web documents clustering is a kind of effective Web mining technique. This paper proposes a novel Web documents clustering algorithm from the perspective of Web usage through analyzing WWW cache, in which Web documents reflect user's recent interests. According to the rich semantic information embedded in hyperlinks in Web documents, we first extracts hyperlinks from Web documents and the Web documents in WWW cache is modeled as an undirected Web graph in our approach. Then the clustering algorithm based on the Web graph model is given. Finally, Experimental results verify that the algorithm is efficient and feasible.\",\"PeriodicalId\":229065,\"journal\":{\"name\":\"IEEE International Workshop on Service-Oriented System Engineering (SOSE'05)\",\"volume\":\"14 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Service-Oriented System Engineering (SOSE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOSE.2005.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Service-Oriented System Engineering (SOSE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOSE.2005.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Web文档聚类是一种有效的Web挖掘技术。本文通过对WWW缓存的分析,从Web使用的角度提出了一种新的Web文档聚类算法,其中Web文档反映了用户最近的兴趣。根据Web文档中超链接所包含的丰富语义信息,首先从Web文档中提取超链接,并将WWW缓存中的Web文档建模为无向Web图。然后给出了基于Web图模型的聚类算法。最后,通过实验验证了该算法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web documents clustering with interest links
Web documents clustering is a kind of effective Web mining technique. This paper proposes a novel Web documents clustering algorithm from the perspective of Web usage through analyzing WWW cache, in which Web documents reflect user's recent interests. According to the rich semantic information embedded in hyperlinks in Web documents, we first extracts hyperlinks from Web documents and the Web documents in WWW cache is modeled as an undirected Web graph in our approach. Then the clustering algorithm based on the Web graph model is given. Finally, Experimental results verify that the algorithm is efficient and feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信