利用系统知识改进ECOC拒收规则

P. Simeone, C. Marrocco, F. Tortorella
{"title":"利用系统知识改进ECOC拒收规则","authors":"P. Simeone, C. Marrocco, F. Tortorella","doi":"10.1109/ICPR.2010.1055","DOIUrl":null,"url":null,"abstract":"Error Correcting Output Coding is a common technique for multiple class classification tasks which decomposes the original problem in several two-class problems solved through dichotomizers. Such classification system can be improved with a reject option which can be defined according to the level of information available from the dichotomizers. This paper analyzes how this knowledge is useful when applying such reject rules. The nature of the outputs, the kind of the employed classifiers and the knowledge of their loss function are influential details for the improvement of the general performance of the system. Experimental results on popular benchmark data sets are reported to show the behavior of the different schemes.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"138 1-3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploiting System Knowledge to Improve ECOC Reject Rules\",\"authors\":\"P. Simeone, C. Marrocco, F. Tortorella\",\"doi\":\"10.1109/ICPR.2010.1055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Error Correcting Output Coding is a common technique for multiple class classification tasks which decomposes the original problem in several two-class problems solved through dichotomizers. Such classification system can be improved with a reject option which can be defined according to the level of information available from the dichotomizers. This paper analyzes how this knowledge is useful when applying such reject rules. The nature of the outputs, the kind of the employed classifiers and the knowledge of their loss function are influential details for the improvement of the general performance of the system. Experimental results on popular benchmark data sets are reported to show the behavior of the different schemes.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"138 1-3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.1055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

纠错输出编码是一种用于多类分类任务的常用技术,它将原问题分解为若干个通过二分类器求解的两类问题。这种分类系统可以通过拒绝选项来改进,拒绝选项可以根据从二分器获得的信息水平来定义。本文分析了这些知识在应用拒绝规则时是如何有用的。输出的性质、所使用的分类器的种类及其损失函数的知识是提高系统总体性能的有影响的细节。在常用基准数据集上的实验结果显示了不同方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting System Knowledge to Improve ECOC Reject Rules
Error Correcting Output Coding is a common technique for multiple class classification tasks which decomposes the original problem in several two-class problems solved through dichotomizers. Such classification system can be improved with a reject option which can be defined according to the level of information available from the dichotomizers. This paper analyzes how this knowledge is useful when applying such reject rules. The nature of the outputs, the kind of the employed classifiers and the knowledge of their loss function are influential details for the improvement of the general performance of the system. Experimental results on popular benchmark data sets are reported to show the behavior of the different schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信