利用切比雪夫小波方法对概率密度函数进行最优数值小波积分

K. T. Shivaram, N. Mahesh Kumar, M. Anusha, B. S. Manohar
{"title":"利用切比雪夫小波方法对概率密度函数进行最优数值小波积分","authors":"K. T. Shivaram, N. Mahesh Kumar, M. Anusha, B. S. Manohar","doi":"10.1109/ICCS45141.2019.9065515","DOIUrl":null,"url":null,"abstract":"This paper presents, numerical evaluation of probability density functions gamma, exponential, weibull, normal distributions with different parameters by wavelet based integration approach of chebyshev wavelet method, we illustrate in an numerical examples that proposed method results in a much lower computation time and complexity than the existing numerical methods and comparable to the performance of those method.","PeriodicalId":433980,"journal":{"name":"2019 International Conference on Intelligent Computing and Control Systems (ICCS)","volume":"125 43","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimal numerical wavelet based integration of probability density function by chebyshev wavelet method\",\"authors\":\"K. T. Shivaram, N. Mahesh Kumar, M. Anusha, B. S. Manohar\",\"doi\":\"10.1109/ICCS45141.2019.9065515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents, numerical evaluation of probability density functions gamma, exponential, weibull, normal distributions with different parameters by wavelet based integration approach of chebyshev wavelet method, we illustrate in an numerical examples that proposed method results in a much lower computation time and complexity than the existing numerical methods and comparable to the performance of those method.\",\"PeriodicalId\":433980,\"journal\":{\"name\":\"2019 International Conference on Intelligent Computing and Control Systems (ICCS)\",\"volume\":\"125 43\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Intelligent Computing and Control Systems (ICCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCS45141.2019.9065515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Computing and Control Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS45141.2019.9065515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用基于小波变换的chebyshev小波变换方法对不同参数的概率密度函数γ、指数、威布尔、正态分布进行了数值计算,并通过一个数值算例说明,所提方法的计算时间和复杂度大大低于现有的数值方法,性能与这些方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The optimal numerical wavelet based integration of probability density function by chebyshev wavelet method
This paper presents, numerical evaluation of probability density functions gamma, exponential, weibull, normal distributions with different parameters by wavelet based integration approach of chebyshev wavelet method, we illustrate in an numerical examples that proposed method results in a much lower computation time and complexity than the existing numerical methods and comparable to the performance of those method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信