一类二阶最优控制问题的逆最优解

L. Rodrigues
{"title":"一类二阶最优控制问题的逆最优解","authors":"L. Rodrigues","doi":"10.1109/MED.2010.5547702","DOIUrl":null,"url":null,"abstract":"This paper presents an inverse optimality method to solve the Hamilton-Jacobi-Bellman equation for a class of second order nonlinear problems for which the cost is quadratic and the dynamics are affine in the input. The running cost that renders the control input optimal is also explicitly determined. One special feature of this method, as compared to other methods in the literature, is the fact that the solution is obtained directly for the control input without needing to assume or compute a value function first. Additionaly, the value function can also be obtained after one solves for the control input. A Lyapunov function that proves stability of the controller is also obtained for a subclass of problems.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"53 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An inverse optimality method to solve a class of second order optimal control problems\",\"authors\":\"L. Rodrigues\",\"doi\":\"10.1109/MED.2010.5547702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an inverse optimality method to solve the Hamilton-Jacobi-Bellman equation for a class of second order nonlinear problems for which the cost is quadratic and the dynamics are affine in the input. The running cost that renders the control input optimal is also explicitly determined. One special feature of this method, as compared to other methods in the literature, is the fact that the solution is obtained directly for the control input without needing to assume or compute a value function first. Additionaly, the value function can also be obtained after one solves for the control input. A Lyapunov function that proves stability of the controller is also obtained for a subclass of problems.\",\"PeriodicalId\":149864,\"journal\":{\"name\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"volume\":\"53 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2010.5547702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

针对一类代价为二次元且输入动力为仿射的二阶非线性问题,提出了求解Hamilton-Jacobi-Bellman方程的逆最优性方法。使控制输入达到最优的运行成本也明确确定。与文献中的其他方法相比,这种方法的一个特点是直接获得控制输入的解,而不需要首先假设或计算值函数。另外,对控制输入进行求解后,也可以得到值函数。对于一类问题,也得到了证明控制器稳定性的李雅普诺夫函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An inverse optimality method to solve a class of second order optimal control problems
This paper presents an inverse optimality method to solve the Hamilton-Jacobi-Bellman equation for a class of second order nonlinear problems for which the cost is quadratic and the dynamics are affine in the input. The running cost that renders the control input optimal is also explicitly determined. One special feature of this method, as compared to other methods in the literature, is the fact that the solution is obtained directly for the control input without needing to assume or compute a value function first. Additionaly, the value function can also be obtained after one solves for the control input. A Lyapunov function that proves stability of the controller is also obtained for a subclass of problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信