{"title":"基于模型预测控制的非合作入侵者空中拦截","authors":"Raunak Srivastava, Rolif Lima, K. Das","doi":"10.23919/ACC53348.2022.9867190","DOIUrl":null,"url":null,"abstract":"Autonomous capture of an unknown non-cooperative aerial target is a complex task requiring real-time target localization, trajectory prediction and control. The current work presents an estimation and control system for a quadrotor in order to track and grab a dynamic aerial target. A Kalman filter is used to estimate and predict the target’s pose in real time, which is further used as reference by a Model Predictive Controller for tracking and grabbing the target while chasing it. The efficacy of the proposed controller is demonstrated through repeated trials with varying initial conditions and target maneuvers. The controller is compared with a conventional PD controller. The accuracy of estimation algorithms and the ability of the proposed controller to neutralize the target is demonstrated by means of simulations in gazebo.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"92 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aerial Interception of Non-Cooperative Intruder using Model Predictive Control\",\"authors\":\"Raunak Srivastava, Rolif Lima, K. Das\",\"doi\":\"10.23919/ACC53348.2022.9867190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous capture of an unknown non-cooperative aerial target is a complex task requiring real-time target localization, trajectory prediction and control. The current work presents an estimation and control system for a quadrotor in order to track and grab a dynamic aerial target. A Kalman filter is used to estimate and predict the target’s pose in real time, which is further used as reference by a Model Predictive Controller for tracking and grabbing the target while chasing it. The efficacy of the proposed controller is demonstrated through repeated trials with varying initial conditions and target maneuvers. The controller is compared with a conventional PD controller. The accuracy of estimation algorithms and the ability of the proposed controller to neutralize the target is demonstrated by means of simulations in gazebo.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"92 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
Autonomous capture of an unknown non-cooperative aerial target is a complex task requiring real-time target localization, trajectory prediction and control. The current work presents an estimation and control system for a quadrotor in order to track and grab a dynamic aerial target. A Kalman filter is used to estimate and predict the target’s pose in real time, which is further used as reference by a Model Predictive Controller for tracking and grabbing the target while chasing it. The efficacy of the proposed controller is demonstrated through repeated trials with varying initial conditions and target maneuvers. The controller is compared with a conventional PD controller. The accuracy of estimation algorithms and the ability of the proposed controller to neutralize the target is demonstrated by means of simulations in gazebo.