分类任务的量子文本编码

Aaranya Alexander, D. Widdows
{"title":"分类任务的量子文本编码","authors":"Aaranya Alexander, D. Widdows","doi":"10.1109/SEC54971.2022.00052","DOIUrl":null,"url":null,"abstract":"This paper explores text classification on quantum computers. Previous results have achieved perfect accuracy on an artificial dataset of 100 short sentences, but at the unscalable cost of using a qubit for each word. This paper demonstrates that an amplitude encoded feature map combined with a quantum support vector machine can achieve 62% average accuracy predicting sentiment using a dataset of 50 actual movie reviews. This is still small, but considerably larger than previously-reported results in quantum NLP.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum Text Encoding for Classification Tasks\",\"authors\":\"Aaranya Alexander, D. Widdows\",\"doi\":\"10.1109/SEC54971.2022.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores text classification on quantum computers. Previous results have achieved perfect accuracy on an artificial dataset of 100 short sentences, but at the unscalable cost of using a qubit for each word. This paper demonstrates that an amplitude encoded feature map combined with a quantum support vector machine can achieve 62% average accuracy predicting sentiment using a dataset of 50 actual movie reviews. This is still small, but considerably larger than previously-reported results in quantum NLP.\",\"PeriodicalId\":364062,\"journal\":{\"name\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC54971.2022.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文探讨了量子计算机上的文本分类。之前的结果在100个短句的人工数据集上取得了完美的准确性,但每个词使用一个量子位的成本不可扩展。本文证明了振幅编码特征映射与量子支持向量机相结合,使用50个实际电影评论的数据集预测情绪可以达到62%的平均准确率。这仍然很小,但比之前报道的量子NLP结果要大得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Text Encoding for Classification Tasks
This paper explores text classification on quantum computers. Previous results have achieved perfect accuracy on an artificial dataset of 100 short sentences, but at the unscalable cost of using a qubit for each word. This paper demonstrates that an amplitude encoded feature map combined with a quantum support vector machine can achieve 62% average accuracy predicting sentiment using a dataset of 50 actual movie reviews. This is still small, but considerably larger than previously-reported results in quantum NLP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信