基于跟踪的车辆内部视频驾驶分心检测

Tashrif Billah, S. Rahman
{"title":"基于跟踪的车辆内部视频驾驶分心检测","authors":"Tashrif Billah, S. Rahman","doi":"10.1109/AVSS.2016.7738077","DOIUrl":null,"url":null,"abstract":"Distraction during driving is a growing concern for global road safety. Different activities impertinent to driving hinder the concentration of driver on road and often cause substantial damage to life and property. For making driving safe, an algorithm is proposed in this paper that is capable of detecting distraction during driving. The proposed algorithm tracks key body parts of the driver in video captured by a front camera. Euclidean distances between the tracking trajectories of body parts are used as representative features that characterize the state of distraction or attention of a driver. The well-known K-nearest neighbor classifier is applied for detecting distraction from the features extracted from body parts. The proposed method is compared with existing methods implementing tracking-based human action identification to corroborate its improved performance.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"34 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Tracking-based detection of driving distraction from vehicular interior video\",\"authors\":\"Tashrif Billah, S. Rahman\",\"doi\":\"10.1109/AVSS.2016.7738077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distraction during driving is a growing concern for global road safety. Different activities impertinent to driving hinder the concentration of driver on road and often cause substantial damage to life and property. For making driving safe, an algorithm is proposed in this paper that is capable of detecting distraction during driving. The proposed algorithm tracks key body parts of the driver in video captured by a front camera. Euclidean distances between the tracking trajectories of body parts are used as representative features that characterize the state of distraction or attention of a driver. The well-known K-nearest neighbor classifier is applied for detecting distraction from the features extracted from body parts. The proposed method is compared with existing methods implementing tracking-based human action identification to corroborate its improved performance.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"34 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

驾驶时分心是全球道路安全日益关注的问题。各种与驾驶无关的活动阻碍了驾驶员在道路上的注意力,往往造成重大的生命财产损失。为了保证行车安全,本文提出了一种能够检测行车分心的算法。该算法通过前置摄像头拍摄的视频跟踪驾驶员的关键身体部位。身体部位跟踪轨迹之间的欧几里得距离被用作表征驾驶员分心或注意力状态的代表性特征。众所周知的k近邻分类器被用于检测从身体部位提取的特征的分心。将该方法与现有的基于跟踪的人体动作识别方法进行了比较,验证了其改进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking-based detection of driving distraction from vehicular interior video
Distraction during driving is a growing concern for global road safety. Different activities impertinent to driving hinder the concentration of driver on road and often cause substantial damage to life and property. For making driving safe, an algorithm is proposed in this paper that is capable of detecting distraction during driving. The proposed algorithm tracks key body parts of the driver in video captured by a front camera. Euclidean distances between the tracking trajectories of body parts are used as representative features that characterize the state of distraction or attention of a driver. The well-known K-nearest neighbor classifier is applied for detecting distraction from the features extracted from body parts. The proposed method is compared with existing methods implementing tracking-based human action identification to corroborate its improved performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信