大型互联非线性系统的Mamdani模糊参数估计算法*

M. Elloumi, O. Naifar, H. Gassara
{"title":"大型互联非线性系统的Mamdani模糊参数估计算法*","authors":"M. Elloumi, O. Naifar, H. Gassara","doi":"10.1109/STA56120.2022.10019034","DOIUrl":null,"url":null,"abstract":"For the category of large-scale nonlinear processes that are composed of a set of linked monovariable systems and represented by discrete input-output models with unknown time-varying coefficients, the current study proposes a recursive algorithm of maximum likelihood estimation based on the fuzzy inference technique. This recursive estimator employs a prediction error strategy and a maximum likelihood estimation algorithm to formulate the issue of estimating the parameters of the process under consideration. The established parameter estimation approach is enhanced by the addition of the Mamdani fuzzy inference system. A numerical simulation exemplar is used to verify the efficacy of the generated theoretical results..","PeriodicalId":430966,"journal":{"name":"2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mamdani fuzzy parameter estimation algorithm for large-scale interconnected nonlinear systems *\",\"authors\":\"M. Elloumi, O. Naifar, H. Gassara\",\"doi\":\"10.1109/STA56120.2022.10019034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the category of large-scale nonlinear processes that are composed of a set of linked monovariable systems and represented by discrete input-output models with unknown time-varying coefficients, the current study proposes a recursive algorithm of maximum likelihood estimation based on the fuzzy inference technique. This recursive estimator employs a prediction error strategy and a maximum likelihood estimation algorithm to formulate the issue of estimating the parameters of the process under consideration. The established parameter estimation approach is enhanced by the addition of the Mamdani fuzzy inference system. A numerical simulation exemplar is used to verify the efficacy of the generated theoretical results..\",\"PeriodicalId\":430966,\"journal\":{\"name\":\"2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STA56120.2022.10019034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA56120.2022.10019034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对由一组相互关联的单变量系统组成的、由未知时变系数的离散输入输出模型表示的大规模非线性过程,本文提出了一种基于模糊推理技术的最大似然估计递归算法。该递归估计器采用预测误差策略和最大似然估计算法来阐述所考虑过程参数的估计问题。通过加入Mamdani模糊推理系统,对所建立的参数估计方法进行了改进。通过数值模拟算例验证了所生成理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mamdani fuzzy parameter estimation algorithm for large-scale interconnected nonlinear systems *
For the category of large-scale nonlinear processes that are composed of a set of linked monovariable systems and represented by discrete input-output models with unknown time-varying coefficients, the current study proposes a recursive algorithm of maximum likelihood estimation based on the fuzzy inference technique. This recursive estimator employs a prediction error strategy and a maximum likelihood estimation algorithm to formulate the issue of estimating the parameters of the process under consideration. The established parameter estimation approach is enhanced by the addition of the Mamdani fuzzy inference system. A numerical simulation exemplar is used to verify the efficacy of the generated theoretical results..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信