情绪回归:使用实值分数来总结整体文档情绪

Adam Drake, Eric K. Ringger, D. Ventura
{"title":"情绪回归:使用实值分数来总结整体文档情绪","authors":"Adam Drake, Eric K. Ringger, D. Ventura","doi":"10.1109/ICSC.2008.67","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a sentiment regression problem: summarizing the overall sentiment of a review with a real-valued score. Empirical results on a set of labeled reviews show that real-valued sentiment modeling is feasible, as several algorithms improve upon baseline performance. We also analyze performance as the granularity of the classification problem moves from two-class (positive vs. negative) towards infinite-class (real-valued).","PeriodicalId":102805,"journal":{"name":"2008 IEEE International Conference on Semantic Computing","volume":"59 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Sentiment Regression: Using Real-Valued Scores to Summarize Overall Document Sentiment\",\"authors\":\"Adam Drake, Eric K. Ringger, D. Ventura\",\"doi\":\"10.1109/ICSC.2008.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a sentiment regression problem: summarizing the overall sentiment of a review with a real-valued score. Empirical results on a set of labeled reviews show that real-valued sentiment modeling is feasible, as several algorithms improve upon baseline performance. We also analyze performance as the granularity of the classification problem moves from two-class (positive vs. negative) towards infinite-class (real-valued).\",\"PeriodicalId\":102805,\"journal\":{\"name\":\"2008 IEEE International Conference on Semantic Computing\",\"volume\":\"59 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2008.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2008.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们考虑了一个情感回归问题:用实值分数总结评论的整体情感。一组标记评论的实证结果表明,实值情感建模是可行的,因为有几种算法在基线性能的基础上得到了改进。当分类问题的粒度从两类(正与负)向无限类(实值)移动时,我们还分析了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Regression: Using Real-Valued Scores to Summarize Overall Document Sentiment
In this paper, we consider a sentiment regression problem: summarizing the overall sentiment of a review with a real-valued score. Empirical results on a set of labeled reviews show that real-valued sentiment modeling is feasible, as several algorithms improve upon baseline performance. We also analyze performance as the granularity of the classification problem moves from two-class (positive vs. negative) towards infinite-class (real-valued).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信