Yuchen Zhang, Yunhang Zhang, G. Portokalidis, Jun Xu
{"title":"理解Rust的运行时性能","authors":"Yuchen Zhang, Yunhang Zhang, G. Portokalidis, Jun Xu","doi":"10.1145/3551349.3559494","DOIUrl":null,"url":null,"abstract":"Rust is a young systems programming language, but it has gained tremendous popularity thanks to its assurance of memory safety. However, the performance of Rust has been less systematically understood, although many people are claiming that Rust is comparable to C/C++ regarding efficiency. In this paper, we aim to understand the performance of Rust, using C as the baseline. First, we collect a set of micro benchmarks where each program is implemented with both Rust and C. To ensure fairness, we manually validate that the Rust version and the C version implement the identical functionality using the same algorithm. Our measurement based on the micro benchmarks shows that Rust is in general slower than C, but the extent of the slowdown varies across different programs. On average, Rust brings a 1.77x “performance overhead” compared to C. Second, we dissect the root causes of the overhead and unveil that it is primarily incurred by run-time checks inserted by the compiler and restrictions enforced by the language design. With the run-time checks disabled and the restrictions loosened, Rust presents a performance indistinguishable from C.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"66 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards Understanding the Runtime Performance of Rust\",\"authors\":\"Yuchen Zhang, Yunhang Zhang, G. Portokalidis, Jun Xu\",\"doi\":\"10.1145/3551349.3559494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rust is a young systems programming language, but it has gained tremendous popularity thanks to its assurance of memory safety. However, the performance of Rust has been less systematically understood, although many people are claiming that Rust is comparable to C/C++ regarding efficiency. In this paper, we aim to understand the performance of Rust, using C as the baseline. First, we collect a set of micro benchmarks where each program is implemented with both Rust and C. To ensure fairness, we manually validate that the Rust version and the C version implement the identical functionality using the same algorithm. Our measurement based on the micro benchmarks shows that Rust is in general slower than C, but the extent of the slowdown varies across different programs. On average, Rust brings a 1.77x “performance overhead” compared to C. Second, we dissect the root causes of the overhead and unveil that it is primarily incurred by run-time checks inserted by the compiler and restrictions enforced by the language design. With the run-time checks disabled and the restrictions loosened, Rust presents a performance indistinguishable from C.\",\"PeriodicalId\":197939,\"journal\":{\"name\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"66 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551349.3559494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3559494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Understanding the Runtime Performance of Rust
Rust is a young systems programming language, but it has gained tremendous popularity thanks to its assurance of memory safety. However, the performance of Rust has been less systematically understood, although many people are claiming that Rust is comparable to C/C++ regarding efficiency. In this paper, we aim to understand the performance of Rust, using C as the baseline. First, we collect a set of micro benchmarks where each program is implemented with both Rust and C. To ensure fairness, we manually validate that the Rust version and the C version implement the identical functionality using the same algorithm. Our measurement based on the micro benchmarks shows that Rust is in general slower than C, but the extent of the slowdown varies across different programs. On average, Rust brings a 1.77x “performance overhead” compared to C. Second, we dissect the root causes of the overhead and unveil that it is primarily incurred by run-time checks inserted by the compiler and restrictions enforced by the language design. With the run-time checks disabled and the restrictions loosened, Rust presents a performance indistinguishable from C.