体积拉伸能量最小化及其最优质量输运的收敛性分析

Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin, M. Yueh, S. Yau
{"title":"体积拉伸能量最小化及其最优质量输运的收敛性分析","authors":"Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin, M. Yueh, S. Yau","doi":"10.48550/arXiv.2210.09654","DOIUrl":null,"url":null,"abstract":"The volumetric stretch energy has been widely applied to the computation of volume-/mass-preserving parameterizations of simply connected tetrahedral mesh models. However, this approach still lacks theoretical support. In this paper, we provide the theoretical foundation for volumetric stretch energy minimization (VSEM) to compute volume-/mass-preserving parameterizations. In addition, we develop an associated efficient VSEM algorithm with guaranteed asymptotic R-linear convergence. Furthermore, based on the VSEM algorithm, we propose a projected gradient method for the computation of the volume/mass-preserving optimal mass transport map with a guaranteed convergence rate of $\\mathcal{O}(1/m)$, and combined with Nesterov-based acceleration, the guaranteed convergence rate becomes $\\mathcal{O}(1/m^2)$. Numerical experiments are presented to justify the theoretical convergence behavior for various examples drawn from known benchmark models. Moreover, these numerical experiments show the effectiveness and accuracy of the proposed algorithm, particularly in the processing of 3D medical MRI brain images.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"23 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Analysis of Volumetric Stretch Energy Minimization and its Associated Optimal Mass Transport\",\"authors\":\"Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin, M. Yueh, S. Yau\",\"doi\":\"10.48550/arXiv.2210.09654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The volumetric stretch energy has been widely applied to the computation of volume-/mass-preserving parameterizations of simply connected tetrahedral mesh models. However, this approach still lacks theoretical support. In this paper, we provide the theoretical foundation for volumetric stretch energy minimization (VSEM) to compute volume-/mass-preserving parameterizations. In addition, we develop an associated efficient VSEM algorithm with guaranteed asymptotic R-linear convergence. Furthermore, based on the VSEM algorithm, we propose a projected gradient method for the computation of the volume/mass-preserving optimal mass transport map with a guaranteed convergence rate of $\\\\mathcal{O}(1/m)$, and combined with Nesterov-based acceleration, the guaranteed convergence rate becomes $\\\\mathcal{O}(1/m^2)$. Numerical experiments are presented to justify the theoretical convergence behavior for various examples drawn from known benchmark models. Moreover, these numerical experiments show the effectiveness and accuracy of the proposed algorithm, particularly in the processing of 3D medical MRI brain images.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"23 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.09654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.09654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

体积拉伸能已被广泛应用于四面体单连通网格模型的保体积/保质量参数化计算。然而,这种方法仍然缺乏理论支持。本文为体积拉伸能量最小化(VSEM)计算体积/质量保持参数化提供了理论基础。此外,我们还开发了一种保证r -线性渐近收敛的高效VSEM算法。在VSEM算法的基础上,提出了一种投影梯度法计算体积/质量保持最优的质量传输映射,保证收敛速率为$\mathcal{O}(1/m)$,并结合Nesterov-based加速,保证收敛速率为$\mathcal{O}(1/m^2)$。数值实验证明了从已知基准模型中提取的各种实例的理论收敛性。此外,这些数值实验表明了该算法的有效性和准确性,特别是在三维医学MRI脑图像处理方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Analysis of Volumetric Stretch Energy Minimization and its Associated Optimal Mass Transport
The volumetric stretch energy has been widely applied to the computation of volume-/mass-preserving parameterizations of simply connected tetrahedral mesh models. However, this approach still lacks theoretical support. In this paper, we provide the theoretical foundation for volumetric stretch energy minimization (VSEM) to compute volume-/mass-preserving parameterizations. In addition, we develop an associated efficient VSEM algorithm with guaranteed asymptotic R-linear convergence. Furthermore, based on the VSEM algorithm, we propose a projected gradient method for the computation of the volume/mass-preserving optimal mass transport map with a guaranteed convergence rate of $\mathcal{O}(1/m)$, and combined with Nesterov-based acceleration, the guaranteed convergence rate becomes $\mathcal{O}(1/m^2)$. Numerical experiments are presented to justify the theoretical convergence behavior for various examples drawn from known benchmark models. Moreover, these numerical experiments show the effectiveness and accuracy of the proposed algorithm, particularly in the processing of 3D medical MRI brain images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信