基于交互性nlu的基于本体的工作流综合,公平支持高性能计算

Zifan Nan, Mithil Dave, Xipeng Shen, C. Liao, T. Vanderbruggen, Pei-Hung Lin, M. Emani
{"title":"基于交互性nlu的基于本体的工作流综合,公平支持高性能计算","authors":"Zifan Nan, Mithil Dave, Xipeng Shen, C. Liao, T. Vanderbruggen, Pei-Hung Lin, M. Emani","doi":"10.1109/HUST56722.2022.00009","DOIUrl":null,"url":null,"abstract":"Workflow synthesis is important for automatically creating the data processing workflow in a FAIR data management system for HPC. Previous methods are table-based, rigid and not scalable. This paper addresses these limitations by developing a new approach to workflow synthesis, interactive NLU-powered ontology-based workflow synthesis (INPOWS). IN-POWS allows the use of Natural Language for queries, maximizes the robustness in handling concepts and language ambiguities through an interactive ontology-based design, and achieves superior extensibility by adopting a synthesis algorithm powered by Natural Language Understanding. In our experiments, INPOWS shows the efficacy in enabling flexible, robust, and extensible workflow synthesis.","PeriodicalId":308756,"journal":{"name":"2022 IEEE/ACM International Workshop on HPC User Support Tools (HUST)","volume":"97 5-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive NLU-Powered Ontology-Based Workflow Synthesis for FAIR Support of HPC\",\"authors\":\"Zifan Nan, Mithil Dave, Xipeng Shen, C. Liao, T. Vanderbruggen, Pei-Hung Lin, M. Emani\",\"doi\":\"10.1109/HUST56722.2022.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Workflow synthesis is important for automatically creating the data processing workflow in a FAIR data management system for HPC. Previous methods are table-based, rigid and not scalable. This paper addresses these limitations by developing a new approach to workflow synthesis, interactive NLU-powered ontology-based workflow synthesis (INPOWS). IN-POWS allows the use of Natural Language for queries, maximizes the robustness in handling concepts and language ambiguities through an interactive ontology-based design, and achieves superior extensibility by adopting a synthesis algorithm powered by Natural Language Understanding. In our experiments, INPOWS shows the efficacy in enabling flexible, robust, and extensible workflow synthesis.\",\"PeriodicalId\":308756,\"journal\":{\"name\":\"2022 IEEE/ACM International Workshop on HPC User Support Tools (HUST)\",\"volume\":\"97 5-6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Workshop on HPC User Support Tools (HUST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUST56722.2022.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on HPC User Support Tools (HUST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUST56722.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工作流综合是高性能计算FAIR数据管理系统中自动生成数据处理工作流的重要组成部分。以前的方法是基于表的,刚性的,不可扩展的。本文通过开发一种新的工作流综合方法来解决这些限制,即交互式nlu支持的基于本体的工作流综合(INPOWS)。in - pows允许使用自然语言进行查询,通过基于交互本体的设计,最大限度地提高了处理概念和语言歧义的鲁棒性,并通过采用由自然语言理解驱动的综合算法实现了卓越的可扩展性。在我们的实验中,INPOWS显示了在支持灵活、健壮和可扩展的工作流合成方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive NLU-Powered Ontology-Based Workflow Synthesis for FAIR Support of HPC
Workflow synthesis is important for automatically creating the data processing workflow in a FAIR data management system for HPC. Previous methods are table-based, rigid and not scalable. This paper addresses these limitations by developing a new approach to workflow synthesis, interactive NLU-powered ontology-based workflow synthesis (INPOWS). IN-POWS allows the use of Natural Language for queries, maximizes the robustness in handling concepts and language ambiguities through an interactive ontology-based design, and achieves superior extensibility by adopting a synthesis algorithm powered by Natural Language Understanding. In our experiments, INPOWS shows the efficacy in enabling flexible, robust, and extensible workflow synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信