基于偏振散射张量特征值分解和深度CNN模型的多时相偏振sar图像分类

Jun-Wu Deng, Haoliang Li, X. Cui, Siwei Chen
{"title":"基于偏振散射张量特征值分解和深度CNN模型的多时相偏振sar图像分类","authors":"Jun-Wu Deng, Haoliang Li, X. Cui, Siwei Chen","doi":"10.1109/ICSPCC55723.2022.9984546","DOIUrl":null,"url":null,"abstract":"Multi-temporal polarimetric synthetic aperture radar (PolSAR) image is an important tool to monitor crops growth and evaluate disaster damage. The multi-temporal PolSAR data has the high dimensional representation. Benefited from the tensor analysis, a three dimensional polarimetric scattering tensor is established. The polarimetric scattering tensor eigenvalue decomposition is proposed to derive the polarimetric features, which are polarimetric tensor entropy, polarimetric tensor alpha angle and polarimetric tensor anisotropy, respectively. Multi-temporal PolSAR image classification is applied to validate the effectiveness of the proposed features. To further improve the classification accuracy, the 1 × 1 convolutional kernel is introduced to learn the inter-temporal information. For the multi-temporal UAVSAR datasets, the proposed method achieves the excellent classification accuracy in the multi-temporal PolSAR image classification.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Temporal PolSAR Image Classification Based on Polarimetric Scattering Tensor Eigenvalue Decomposition and Deep CNN Model\",\"authors\":\"Jun-Wu Deng, Haoliang Li, X. Cui, Siwei Chen\",\"doi\":\"10.1109/ICSPCC55723.2022.9984546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-temporal polarimetric synthetic aperture radar (PolSAR) image is an important tool to monitor crops growth and evaluate disaster damage. The multi-temporal PolSAR data has the high dimensional representation. Benefited from the tensor analysis, a three dimensional polarimetric scattering tensor is established. The polarimetric scattering tensor eigenvalue decomposition is proposed to derive the polarimetric features, which are polarimetric tensor entropy, polarimetric tensor alpha angle and polarimetric tensor anisotropy, respectively. Multi-temporal PolSAR image classification is applied to validate the effectiveness of the proposed features. To further improve the classification accuracy, the 1 × 1 convolutional kernel is introduced to learn the inter-temporal information. For the multi-temporal UAVSAR datasets, the proposed method achieves the excellent classification accuracy in the multi-temporal PolSAR image classification.\",\"PeriodicalId\":346917,\"journal\":{\"name\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCC55723.2022.9984546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多时相偏振合成孔径雷达(PolSAR)图像是农作物生长监测和灾害损失评估的重要工具。多时相PolSAR数据具有高维表示。通过张量分析,建立了三维偏振散射张量。提出了偏振散射张量特征值分解方法,导出了偏振张量熵、偏振张量α角和偏振张量各向异性的偏振特征。应用多时相PolSAR图像分类验证了所提特征的有效性。为了进一步提高分类精度,引入1 × 1卷积核学习时间间信息。对于多时相UAVSAR数据集,该方法在多时相PolSAR图像分类中取得了较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Temporal PolSAR Image Classification Based on Polarimetric Scattering Tensor Eigenvalue Decomposition and Deep CNN Model
Multi-temporal polarimetric synthetic aperture radar (PolSAR) image is an important tool to monitor crops growth and evaluate disaster damage. The multi-temporal PolSAR data has the high dimensional representation. Benefited from the tensor analysis, a three dimensional polarimetric scattering tensor is established. The polarimetric scattering tensor eigenvalue decomposition is proposed to derive the polarimetric features, which are polarimetric tensor entropy, polarimetric tensor alpha angle and polarimetric tensor anisotropy, respectively. Multi-temporal PolSAR image classification is applied to validate the effectiveness of the proposed features. To further improve the classification accuracy, the 1 × 1 convolutional kernel is introduced to learn the inter-temporal information. For the multi-temporal UAVSAR datasets, the proposed method achieves the excellent classification accuracy in the multi-temporal PolSAR image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信