{"title":"片上信号通信的热感知光电路由协同设计","authors":"Yu-Sheng Lu, Kuan-Cheng Chen, Yu-Ling Hsu, Yao-Wen Chang","doi":"10.1145/3489517.3530404","DOIUrl":null,"url":null,"abstract":"The optical interconnection is a promising solution for on-chip signal communication in modern system-on-chip (SoC) and heterogeneous integration designs, providing large bandwidth and high-speed transmission with low power consumption. Previous works do not handle two main issues for on-chip optical-electrical (O-E) co-design: the thermal impact during O-E routing and the trade-offs among power consumption, wirelength, and congestion. As a result, the thermal-induced band shift might incur transmission malfunction; the power consumption estimation is inaccurate; thus, only suboptimal results are obtained. To remedy these disadvantages, we present a thermal-aware optical-electrical routing co-design flow to minimize power consumption, thermal impact, and wirelength. Experimental results based on the ISPD 2019 contest benchmarks show that our co-design flow significantly outperforms state-of-the-art works in power consumption, thermal impact, and wire-length.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"50 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal-aware optical-electrical routing codesign for on-chip signal communications\",\"authors\":\"Yu-Sheng Lu, Kuan-Cheng Chen, Yu-Ling Hsu, Yao-Wen Chang\",\"doi\":\"10.1145/3489517.3530404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical interconnection is a promising solution for on-chip signal communication in modern system-on-chip (SoC) and heterogeneous integration designs, providing large bandwidth and high-speed transmission with low power consumption. Previous works do not handle two main issues for on-chip optical-electrical (O-E) co-design: the thermal impact during O-E routing and the trade-offs among power consumption, wirelength, and congestion. As a result, the thermal-induced band shift might incur transmission malfunction; the power consumption estimation is inaccurate; thus, only suboptimal results are obtained. To remedy these disadvantages, we present a thermal-aware optical-electrical routing co-design flow to minimize power consumption, thermal impact, and wirelength. Experimental results based on the ISPD 2019 contest benchmarks show that our co-design flow significantly outperforms state-of-the-art works in power consumption, thermal impact, and wire-length.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"50 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal-aware optical-electrical routing codesign for on-chip signal communications
The optical interconnection is a promising solution for on-chip signal communication in modern system-on-chip (SoC) and heterogeneous integration designs, providing large bandwidth and high-speed transmission with low power consumption. Previous works do not handle two main issues for on-chip optical-electrical (O-E) co-design: the thermal impact during O-E routing and the trade-offs among power consumption, wirelength, and congestion. As a result, the thermal-induced band shift might incur transmission malfunction; the power consumption estimation is inaccurate; thus, only suboptimal results are obtained. To remedy these disadvantages, we present a thermal-aware optical-electrical routing co-design flow to minimize power consumption, thermal impact, and wirelength. Experimental results based on the ISPD 2019 contest benchmarks show that our co-design flow significantly outperforms state-of-the-art works in power consumption, thermal impact, and wire-length.