Dawei Li, S. Joshi, S. Memik, J. Hoff, S. Jindariani, Tiehui Liu, J. Olsen, N. Tran
{"title":"联想记忆的功率表征方法","authors":"Dawei Li, S. Joshi, S. Memik, J. Hoff, S. Jindariani, Tiehui Liu, J. Olsen, N. Tran","doi":"10.1109/ICCD.2015.7357156","DOIUrl":null,"url":null,"abstract":"Content Addressable Memories (CAM) have become increasingly more important in applications requiring high speed memory search due to their inherent massively parallel processing architecture. We present a complete power analysis methodology for CAM systems to aid the exploration of their power-performance trade-offs in future systems. Our proposed methodology uses detailed transistor level circuit simulation of power behavior and a handful of input data types to simulate full chip power consumption. Furthermore, we applied our power analysis methodology on a custom designed associative memory test chip. This chip was developed by Fermilab for the purpose of developing high performance real-time pattern recognition on high volume data produced by a future large-scale scientific experiment. We applied our methodology to configure a power model for this test chip. Our model is capable of predicting the total average power within 4% of actual power measurements. Our power analysis methodology can be generalized and applied to other CAM-like memory systems and accurately characterize their power behavior.","PeriodicalId":129506,"journal":{"name":"2015 33rd IEEE International Conference on Computer Design (ICCD)","volume":"80 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A methodology for power characterization of associative memories\",\"authors\":\"Dawei Li, S. Joshi, S. Memik, J. Hoff, S. Jindariani, Tiehui Liu, J. Olsen, N. Tran\",\"doi\":\"10.1109/ICCD.2015.7357156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content Addressable Memories (CAM) have become increasingly more important in applications requiring high speed memory search due to their inherent massively parallel processing architecture. We present a complete power analysis methodology for CAM systems to aid the exploration of their power-performance trade-offs in future systems. Our proposed methodology uses detailed transistor level circuit simulation of power behavior and a handful of input data types to simulate full chip power consumption. Furthermore, we applied our power analysis methodology on a custom designed associative memory test chip. This chip was developed by Fermilab for the purpose of developing high performance real-time pattern recognition on high volume data produced by a future large-scale scientific experiment. We applied our methodology to configure a power model for this test chip. Our model is capable of predicting the total average power within 4% of actual power measurements. Our power analysis methodology can be generalized and applied to other CAM-like memory systems and accurately characterize their power behavior.\",\"PeriodicalId\":129506,\"journal\":{\"name\":\"2015 33rd IEEE International Conference on Computer Design (ICCD)\",\"volume\":\"80 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 33rd IEEE International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2015.7357156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 33rd IEEE International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2015.7357156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A methodology for power characterization of associative memories
Content Addressable Memories (CAM) have become increasingly more important in applications requiring high speed memory search due to their inherent massively parallel processing architecture. We present a complete power analysis methodology for CAM systems to aid the exploration of their power-performance trade-offs in future systems. Our proposed methodology uses detailed transistor level circuit simulation of power behavior and a handful of input data types to simulate full chip power consumption. Furthermore, we applied our power analysis methodology on a custom designed associative memory test chip. This chip was developed by Fermilab for the purpose of developing high performance real-time pattern recognition on high volume data produced by a future large-scale scientific experiment. We applied our methodology to configure a power model for this test chip. Our model is capable of predicting the total average power within 4% of actual power measurements. Our power analysis methodology can be generalized and applied to other CAM-like memory systems and accurately characterize their power behavior.