基于局部参数逼近的知识梯度算法

Bolong Cheng, A. Jamshidi, Warrren B Powell
{"title":"基于局部参数逼近的知识梯度算法","authors":"Bolong Cheng, A. Jamshidi, Warrren B Powell","doi":"10.1109/WSC.2013.6721477","DOIUrl":null,"url":null,"abstract":"We are interested in maximizing a general (but continuous) function where observations are noisy and may be expensive. We derive a knowledge gradient policy, which chooses measurements which maximize the expected value of information, while using a locally parametric belief model which uses linear approximations around regions of the function, known as clouds. The method, called DC-RBF (Dirichlet Clouds with Radial Basis Functions) is well suited to recursive estimation, and uses a compact representation of the function which avoids storing the entire history. Our technique allows for correlated beliefs within adjacent subsets of the alternatives and does not pose any a priori assumption on the global shape of the underlying function. Experimental work suggests that the method adapts to a range of arbitrary, continuous functions, and appears to reliably find the optimal solution.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"11 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The knowledge gradient algorithm using locally parametric approximations\",\"authors\":\"Bolong Cheng, A. Jamshidi, Warrren B Powell\",\"doi\":\"10.1109/WSC.2013.6721477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are interested in maximizing a general (but continuous) function where observations are noisy and may be expensive. We derive a knowledge gradient policy, which chooses measurements which maximize the expected value of information, while using a locally parametric belief model which uses linear approximations around regions of the function, known as clouds. The method, called DC-RBF (Dirichlet Clouds with Radial Basis Functions) is well suited to recursive estimation, and uses a compact representation of the function which avoids storing the entire history. Our technique allows for correlated beliefs within adjacent subsets of the alternatives and does not pose any a priori assumption on the global shape of the underlying function. Experimental work suggests that the method adapts to a range of arbitrary, continuous functions, and appears to reliably find the optimal solution.\",\"PeriodicalId\":223717,\"journal\":{\"name\":\"2013 Winter Simulations Conference (WSC)\",\"volume\":\"11 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Winter Simulations Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2013.6721477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们感兴趣的是最大化一个一般的(但连续的)函数,其中观察值是有噪声的,可能是昂贵的。我们推导了一种知识梯度策略,该策略选择最大化信息期望值的测量,同时使用局部参数信念模型,该模型在函数的区域(称为云)周围使用线性逼近。该方法被称为DC-RBF (Dirichlet Clouds with Radial Basis Functions),非常适合于递归估计,并且使用了函数的紧凑表示,避免了存储整个历史。我们的技术允许在相邻的备选子集中存在相关的信念,并且不会对潜在函数的全局形状提出任何先验假设。实验表明,该方法适用于任意范围的连续函数,并能可靠地找到最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The knowledge gradient algorithm using locally parametric approximations
We are interested in maximizing a general (but continuous) function where observations are noisy and may be expensive. We derive a knowledge gradient policy, which chooses measurements which maximize the expected value of information, while using a locally parametric belief model which uses linear approximations around regions of the function, known as clouds. The method, called DC-RBF (Dirichlet Clouds with Radial Basis Functions) is well suited to recursive estimation, and uses a compact representation of the function which avoids storing the entire history. Our technique allows for correlated beliefs within adjacent subsets of the alternatives and does not pose any a priori assumption on the global shape of the underlying function. Experimental work suggests that the method adapts to a range of arbitrary, continuous functions, and appears to reliably find the optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信