计算填字游戏的线索

Kevin Ferland
{"title":"计算填字游戏的线索","authors":"Kevin Ferland","doi":"10.2478/rmm-2020-0001","DOIUrl":null,"url":null,"abstract":"\n We consider different ways to count the number of clues in American-style crossword puzzle grids. One yields a basic parity result for symmetric square grids. Another works efficiently even for non-symmetric grids that are already numbered. We further discuss the upper limit on the number of clues in a crossword puzzle with no 2-letter answers, and open questions are given. As a bonus, a mathematically-themed crossword puzzle is included!","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"23 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Counting Clues in Crosswords\",\"authors\":\"Kevin Ferland\",\"doi\":\"10.2478/rmm-2020-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We consider different ways to count the number of clues in American-style crossword puzzle grids. One yields a basic parity result for symmetric square grids. Another works efficiently even for non-symmetric grids that are already numbered. We further discuss the upper limit on the number of clues in a crossword puzzle with no 2-letter answers, and open questions are given. As a bonus, a mathematically-themed crossword puzzle is included!\",\"PeriodicalId\":120489,\"journal\":{\"name\":\"Recreational Mathematics Magazine\",\"volume\":\"23 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recreational Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rmm-2020-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2020-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了不同的方法来计算美式纵横字谜网格中的线索数量。一种是对称方形网格的基本奇偶性结果。另一种方法即使对已经编号的非对称网格也有效。我们进一步讨论了没有两个字母答案的填字游戏的线索数量上限,并给出了开放问题。作为奖励,一个数学主题的填字游戏包括!
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting Clues in Crosswords
We consider different ways to count the number of clues in American-style crossword puzzle grids. One yields a basic parity result for symmetric square grids. Another works efficiently even for non-symmetric grids that are already numbered. We further discuss the upper limit on the number of clues in a crossword puzzle with no 2-letter answers, and open questions are given. As a bonus, a mathematically-themed crossword puzzle is included!
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信