核粒子类型分类的无监督机器学习方法

Nicholas Liebers, Jacob Huckelberry, Daniel C Ruiz, D. Fobar, P. Chapman
{"title":"核粒子类型分类的无监督机器学习方法","authors":"Nicholas Liebers, Jacob Huckelberry, Daniel C Ruiz, D. Fobar, P. Chapman","doi":"10.1109/LISAT50122.2022.9924043","DOIUrl":null,"url":null,"abstract":"Historically, nuclear science and radiation detection fields of research used Pulse Shape Discrimination (PSD) to label gamma-ray and neutron interactions. However, PSD’s effectiveness relies greatly on the existence of distinguishable differences in an interaction’s measured pulse shape. In the fields of machine learning and data analytics, clustering algorithms provide ways to group samples with similar features without the need for labels. Clustering gamma-ray and neutron interactions may mitigate PSD’s pitfalls, since clustering methods view the total waveform rather than just the area under the tail and the total area under the pulse. However, traditional clustering methods, such as the k-means clustering algorithm, suffer from poor performance on high dimensional data. This study explores unsupervised machine learning methods using Deep Neural Networks (DNN) to cluster gamma-ray and neutron interaction measurements collected with an organic scintillation detector, in order to perform binary labeling of gamma-rays and neutrons. Using various network architectures, this research demonstrates the effectiveness of using autoencoder-based neural networks to cluster gamma-ray and neutron interactions when compared to shallow clustering algorithms. The results reveal the effectiveness of autoencoders on high energy gamma-ray and neutron pulses with an energy deposit greater than 0.80 MeVee whilst greatly outperforming k-means comparatively in all cases.","PeriodicalId":380048,"journal":{"name":"2022 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","volume":"24 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Machine Learning Approaches to Nuclear Particle Type Classification\",\"authors\":\"Nicholas Liebers, Jacob Huckelberry, Daniel C Ruiz, D. Fobar, P. Chapman\",\"doi\":\"10.1109/LISAT50122.2022.9924043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historically, nuclear science and radiation detection fields of research used Pulse Shape Discrimination (PSD) to label gamma-ray and neutron interactions. However, PSD’s effectiveness relies greatly on the existence of distinguishable differences in an interaction’s measured pulse shape. In the fields of machine learning and data analytics, clustering algorithms provide ways to group samples with similar features without the need for labels. Clustering gamma-ray and neutron interactions may mitigate PSD’s pitfalls, since clustering methods view the total waveform rather than just the area under the tail and the total area under the pulse. However, traditional clustering methods, such as the k-means clustering algorithm, suffer from poor performance on high dimensional data. This study explores unsupervised machine learning methods using Deep Neural Networks (DNN) to cluster gamma-ray and neutron interaction measurements collected with an organic scintillation detector, in order to perform binary labeling of gamma-rays and neutrons. Using various network architectures, this research demonstrates the effectiveness of using autoencoder-based neural networks to cluster gamma-ray and neutron interactions when compared to shallow clustering algorithms. The results reveal the effectiveness of autoencoders on high energy gamma-ray and neutron pulses with an energy deposit greater than 0.80 MeVee whilst greatly outperforming k-means comparatively in all cases.\",\"PeriodicalId\":380048,\"journal\":{\"name\":\"2022 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"volume\":\"24 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Long Island Systems, Applications and Technology Conference (LISAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISAT50122.2022.9924043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Long Island Systems, Applications and Technology Conference (LISAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISAT50122.2022.9924043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

历史上,核科学和辐射探测领域的研究使用脉冲形状判别(PSD)来标记伽马射线和中子的相互作用。然而,PSD的有效性在很大程度上依赖于在相互作用的测量脉冲形状中存在可区分的差异。在机器学习和数据分析领域,聚类算法提供了不需要标签就能对具有相似特征的样本进行分组的方法。聚类伽马射线和中子相互作用可以减轻PSD的缺陷,因为聚类方法观察的是整个波形,而不仅仅是尾部下的面积和脉冲下的总面积。然而,传统的聚类方法,如k-means聚类算法,在高维数据上表现不佳。本研究探索了使用深度神经网络(DNN)的无监督机器学习方法,将有机闪烁探测器收集的伽马射线和中子相互作用测量数据聚类,以便对伽马射线和中子进行二元标记。通过使用各种网络架构,本研究证明了与浅聚类算法相比,使用基于自编码器的神经网络对伽马射线和中子相互作用进行聚类的有效性。结果表明,自编码器在能量沉积大于0.80 MeVee的高能伽马射线和中子脉冲上的有效性,同时在所有情况下都大大优于k-means。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Machine Learning Approaches to Nuclear Particle Type Classification
Historically, nuclear science and radiation detection fields of research used Pulse Shape Discrimination (PSD) to label gamma-ray and neutron interactions. However, PSD’s effectiveness relies greatly on the existence of distinguishable differences in an interaction’s measured pulse shape. In the fields of machine learning and data analytics, clustering algorithms provide ways to group samples with similar features without the need for labels. Clustering gamma-ray and neutron interactions may mitigate PSD’s pitfalls, since clustering methods view the total waveform rather than just the area under the tail and the total area under the pulse. However, traditional clustering methods, such as the k-means clustering algorithm, suffer from poor performance on high dimensional data. This study explores unsupervised machine learning methods using Deep Neural Networks (DNN) to cluster gamma-ray and neutron interaction measurements collected with an organic scintillation detector, in order to perform binary labeling of gamma-rays and neutrons. Using various network architectures, this research demonstrates the effectiveness of using autoencoder-based neural networks to cluster gamma-ray and neutron interactions when compared to shallow clustering algorithms. The results reveal the effectiveness of autoencoders on high energy gamma-ray and neutron pulses with an energy deposit greater than 0.80 MeVee whilst greatly outperforming k-means comparatively in all cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信