{"title":"为信息封闭辩护","authors":"L. Floridi","doi":"10.1093/oso/9780198833635.003.0007","DOIUrl":null,"url":null,"abstract":"In this chapter, the principle of information closure (PIC) is defined and defended against a sceptical objection similar to the one discussed by Dretske in relation to the principle of epistemic closure. If successful, given that PIC is equivalent to the axiom of distribution and that the latter is one of the conditions that discriminate between normal and non-normal modal logics, one potentially good reason to look for a formalization of the logic of ‘S is informed that p’ among the non-normal modal logics, which reject the axiom, is also removed. This is not to argue that the logic of ‘S is informed that p’ should be a normal modal logic, but that it could still be, insofar as the objection that it could not be, based on the sceptical objection against PIC, has been removed. In other words, this chapter argues that the sceptical objection against PIC fails, so such an objection provides no ground to abandon the normal modal logic B (also known as KTB) as a formalization of ‘S is informed that p’, which remains plausible insofar as this specific obstacle is concerned.","PeriodicalId":178465,"journal":{"name":"The Logic of Information","volume":"33 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Defence of Information Closure\",\"authors\":\"L. Floridi\",\"doi\":\"10.1093/oso/9780198833635.003.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, the principle of information closure (PIC) is defined and defended against a sceptical objection similar to the one discussed by Dretske in relation to the principle of epistemic closure. If successful, given that PIC is equivalent to the axiom of distribution and that the latter is one of the conditions that discriminate between normal and non-normal modal logics, one potentially good reason to look for a formalization of the logic of ‘S is informed that p’ among the non-normal modal logics, which reject the axiom, is also removed. This is not to argue that the logic of ‘S is informed that p’ should be a normal modal logic, but that it could still be, insofar as the objection that it could not be, based on the sceptical objection against PIC, has been removed. In other words, this chapter argues that the sceptical objection against PIC fails, so such an objection provides no ground to abandon the normal modal logic B (also known as KTB) as a formalization of ‘S is informed that p’, which remains plausible insofar as this specific obstacle is concerned.\",\"PeriodicalId\":178465,\"journal\":{\"name\":\"The Logic of Information\",\"volume\":\"33 18\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Logic of Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198833635.003.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Logic of Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198833635.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this chapter, the principle of information closure (PIC) is defined and defended against a sceptical objection similar to the one discussed by Dretske in relation to the principle of epistemic closure. If successful, given that PIC is equivalent to the axiom of distribution and that the latter is one of the conditions that discriminate between normal and non-normal modal logics, one potentially good reason to look for a formalization of the logic of ‘S is informed that p’ among the non-normal modal logics, which reject the axiom, is also removed. This is not to argue that the logic of ‘S is informed that p’ should be a normal modal logic, but that it could still be, insofar as the objection that it could not be, based on the sceptical objection against PIC, has been removed. In other words, this chapter argues that the sceptical objection against PIC fails, so such an objection provides no ground to abandon the normal modal logic B (also known as KTB) as a formalization of ‘S is informed that p’, which remains plausible insofar as this specific obstacle is concerned.