正则Wirtinger流无相被动合成孔径成像

K. Aditi, Achanna Anil Kumar, A. Majumdar, T. Chakravarty, Kriti Kumar
{"title":"正则Wirtinger流无相被动合成孔径成像","authors":"K. Aditi, Achanna Anil Kumar, A. Majumdar, T. Chakravarty, Kriti Kumar","doi":"10.23919/eusipco55093.2022.9909573","DOIUrl":null,"url":null,"abstract":"In this paper, we present a training-less methodology for Phaseless Passive Synthetic Aperture Radar imaging. The existing approach based on Wirtinger Flow (WF) requires large number of phaseless measurements for satisfactory reconstruction. To address this issue, we propose a regularized Wirtinger Flow based approach that helps with efficient image reconstruction. We employ Total Variation, BM3D and Deep Image Prior based regularizers/denoisers in an ADMM framework for the proposed solution. The results indicate that compared to the state-of-the-art, the proposed approach not only facilitates better reconstruction with lesser measurements but also shows robustness against SAR trajectory errors.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"11 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow\",\"authors\":\"K. Aditi, Achanna Anil Kumar, A. Majumdar, T. Chakravarty, Kriti Kumar\",\"doi\":\"10.23919/eusipco55093.2022.9909573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a training-less methodology for Phaseless Passive Synthetic Aperture Radar imaging. The existing approach based on Wirtinger Flow (WF) requires large number of phaseless measurements for satisfactory reconstruction. To address this issue, we propose a regularized Wirtinger Flow based approach that helps with efficient image reconstruction. We employ Total Variation, BM3D and Deep Image Prior based regularizers/denoisers in an ADMM framework for the proposed solution. The results indicate that compared to the state-of-the-art, the proposed approach not only facilitates better reconstruction with lesser measurements but also shows robustness against SAR trajectory errors.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"11 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种无相被动合成孔径雷达成像的无训练方法。现有的基于WF流的方法需要大量的无相测量才能获得满意的重建结果。为了解决这个问题,我们提出了一种基于正则化Wirtinger流的方法,有助于有效的图像重建。我们在ADMM框架中采用了全变分、BM3D和基于深度图像先验的正则化/去噪器来提出解决方案。结果表明,与现有方法相比,该方法不仅能够以较少的测量量实现更好的重建,而且对SAR轨迹误差具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow
In this paper, we present a training-less methodology for Phaseless Passive Synthetic Aperture Radar imaging. The existing approach based on Wirtinger Flow (WF) requires large number of phaseless measurements for satisfactory reconstruction. To address this issue, we propose a regularized Wirtinger Flow based approach that helps with efficient image reconstruction. We employ Total Variation, BM3D and Deep Image Prior based regularizers/denoisers in an ADMM framework for the proposed solution. The results indicate that compared to the state-of-the-art, the proposed approach not only facilitates better reconstruction with lesser measurements but also shows robustness against SAR trajectory errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信