移动机器人复合路径规划算法

Huailin Zhao, Zhen Nie, Fangbo Zhou, Shengyang Lu
{"title":"移动机器人复合路径规划算法","authors":"Huailin Zhao, Zhen Nie, Fangbo Zhou, Shengyang Lu","doi":"10.1109/ICPECA51329.2021.9362724","DOIUrl":null,"url":null,"abstract":"In this paper, we designed a compound algorithm which combined the advantages of Dijkstra and ant colony optimization to complete the robot path planning. The compound algorithm is one that uses the Dijkstra algorithm for initial path planning under a viewable environment model, and then optimizes the initial path with an improved ACO. Pointing at the problem that the ACO is slow to converge and easy to fall into the local optimal solution, the performance of ACO is improved by constructing a new heuristic function and improving the pheromone update principle. Through the simulation on MATLAB, the designed algorithm shows higher path search efficiency and path optimization rate than the traditional algorithms.","PeriodicalId":119798,"journal":{"name":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Compound Path Planning Algorithm for Mobile Robots\",\"authors\":\"Huailin Zhao, Zhen Nie, Fangbo Zhou, Shengyang Lu\",\"doi\":\"10.1109/ICPECA51329.2021.9362724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we designed a compound algorithm which combined the advantages of Dijkstra and ant colony optimization to complete the robot path planning. The compound algorithm is one that uses the Dijkstra algorithm for initial path planning under a viewable environment model, and then optimizes the initial path with an improved ACO. Pointing at the problem that the ACO is slow to converge and easy to fall into the local optimal solution, the performance of ACO is improved by constructing a new heuristic function and improving the pheromone update principle. Through the simulation on MATLAB, the designed algorithm shows higher path search efficiency and path optimization rate than the traditional algorithms.\",\"PeriodicalId\":119798,\"journal\":{\"name\":\"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPECA51329.2021.9362724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA51329.2021.9362724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文设计了一种结合Dijkstra算法和蚁群算法优点的复合算法来完成机器人的路径规划。复合算法是在可视环境模型下,利用Dijkstra算法进行初始路径规划,然后利用改进的蚁群算法对初始路径进行优化。针对蚁群算法收敛速度慢、易陷入局部最优解的问题,通过构造新的启发式函数和改进信息素更新原理,提高了蚁群算法的性能。通过MATLAB仿真,所设计的算法比传统算法具有更高的路径搜索效率和路径优化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Compound Path Planning Algorithm for Mobile Robots
In this paper, we designed a compound algorithm which combined the advantages of Dijkstra and ant colony optimization to complete the robot path planning. The compound algorithm is one that uses the Dijkstra algorithm for initial path planning under a viewable environment model, and then optimizes the initial path with an improved ACO. Pointing at the problem that the ACO is slow to converge and easy to fall into the local optimal solution, the performance of ACO is improved by constructing a new heuristic function and improving the pheromone update principle. Through the simulation on MATLAB, the designed algorithm shows higher path search efficiency and path optimization rate than the traditional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信