H. Cai, L. Jia, Gang Liu, Shangmao Hu, Jian Shi, Hengxin He, Xiangen Zhao, Junjia He
{"title":"中国南方电网超高压和特高压架空输电线路的雷电性能","authors":"H. Cai, L. Jia, Gang Liu, Shangmao Hu, Jian Shi, Hengxin He, Xiangen Zhao, Junjia He","doi":"10.1109/ICLP.2016.7791355","DOIUrl":null,"url":null,"abstract":"Lightning stroke is the main cause of trip-outs of EHV and UHV transmission lines in China Southern Power Grid (CSG). In order to improving the lightning performance of overhead transmission lines, the lightning activities of CSG in 2006 to 2014 was analyzed. It indicates that the coastal Guangdong and Guangxi province are suffered more ground flashes, where the average ground flash density is over 7.98 flashes/km2/year. 306 lightning flashover incidents of 500kV AC, ± 500kV HVDC and ± 800kV UHVDC transmission lines were investigated. It is inferred that about 84% lightning flashover incidents was caused by lightning shielding failure. The corresponding ground wire protection angle for 81% incidents is larger than 5°, and with protection angle decreases, lightning trip-out failures are significantly reduced. Based on the guidelines proposed by IEEE and CIGRE working group, CSG has developed their own lightning risk estimation tool named LPTL. The predication result of six 500kV AC transmission lines was compared to field experience which validates the IEEE recommended method for 500kV AC transmission lines. Further works should be done to revisit the validity of existing risk estimation method for HVDC transmission lines.","PeriodicalId":373744,"journal":{"name":"2016 33rd International Conference on Lightning Protection (ICLP)","volume":"26 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lightning performance of EHV and UHV overhead transmission Lines in China southern power grid\",\"authors\":\"H. Cai, L. Jia, Gang Liu, Shangmao Hu, Jian Shi, Hengxin He, Xiangen Zhao, Junjia He\",\"doi\":\"10.1109/ICLP.2016.7791355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lightning stroke is the main cause of trip-outs of EHV and UHV transmission lines in China Southern Power Grid (CSG). In order to improving the lightning performance of overhead transmission lines, the lightning activities of CSG in 2006 to 2014 was analyzed. It indicates that the coastal Guangdong and Guangxi province are suffered more ground flashes, where the average ground flash density is over 7.98 flashes/km2/year. 306 lightning flashover incidents of 500kV AC, ± 500kV HVDC and ± 800kV UHVDC transmission lines were investigated. It is inferred that about 84% lightning flashover incidents was caused by lightning shielding failure. The corresponding ground wire protection angle for 81% incidents is larger than 5°, and with protection angle decreases, lightning trip-out failures are significantly reduced. Based on the guidelines proposed by IEEE and CIGRE working group, CSG has developed their own lightning risk estimation tool named LPTL. The predication result of six 500kV AC transmission lines was compared to field experience which validates the IEEE recommended method for 500kV AC transmission lines. Further works should be done to revisit the validity of existing risk estimation method for HVDC transmission lines.\",\"PeriodicalId\":373744,\"journal\":{\"name\":\"2016 33rd International Conference on Lightning Protection (ICLP)\",\"volume\":\"26 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 33rd International Conference on Lightning Protection (ICLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICLP.2016.7791355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 33rd International Conference on Lightning Protection (ICLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICLP.2016.7791355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lightning performance of EHV and UHV overhead transmission Lines in China southern power grid
Lightning stroke is the main cause of trip-outs of EHV and UHV transmission lines in China Southern Power Grid (CSG). In order to improving the lightning performance of overhead transmission lines, the lightning activities of CSG in 2006 to 2014 was analyzed. It indicates that the coastal Guangdong and Guangxi province are suffered more ground flashes, where the average ground flash density is over 7.98 flashes/km2/year. 306 lightning flashover incidents of 500kV AC, ± 500kV HVDC and ± 800kV UHVDC transmission lines were investigated. It is inferred that about 84% lightning flashover incidents was caused by lightning shielding failure. The corresponding ground wire protection angle for 81% incidents is larger than 5°, and with protection angle decreases, lightning trip-out failures are significantly reduced. Based on the guidelines proposed by IEEE and CIGRE working group, CSG has developed their own lightning risk estimation tool named LPTL. The predication result of six 500kV AC transmission lines was compared to field experience which validates the IEEE recommended method for 500kV AC transmission lines. Further works should be done to revisit the validity of existing risk estimation method for HVDC transmission lines.