基于骨架的动作识别的片段驱动对比学习

Rong Gao, Xin Liu, Jingyu Yang, Huanjing Yue
{"title":"基于骨架的动作识别的片段驱动对比学习","authors":"Rong Gao, Xin Liu, Jingyu Yang, Huanjing Yue","doi":"10.1109/VCIP56404.2022.10008837","DOIUrl":null,"url":null,"abstract":"In this study, we propose a Clip-Driven Contrastive Learning for Skeleton-Based Action Recognition (CdCLR). In-stead of considering sequences as instances, CdCLR extracts clips from the sequences as new instances. Aim to implement inherent supervision-guided contrastive learning through joint optimal training of sequences discrimination, clips discrimination, and order verification. Mining abundant positive/negative pairs inside sequence while learning inter-and intra-sequence semantic repre-sentations. Extensive experiments on the NTU RGB+D 60, UCLA and iMiGUE datasets present that CdCLR exhibits superior performance under various evaluation protocols and reaches state-of-the-art. Our code is available at https://github.com/Erich-G/CdCLRI.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"60 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CdCLR: Clip-Driven Contrastive Learning for Skeleton-Based Action Recognition\",\"authors\":\"Rong Gao, Xin Liu, Jingyu Yang, Huanjing Yue\",\"doi\":\"10.1109/VCIP56404.2022.10008837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a Clip-Driven Contrastive Learning for Skeleton-Based Action Recognition (CdCLR). In-stead of considering sequences as instances, CdCLR extracts clips from the sequences as new instances. Aim to implement inherent supervision-guided contrastive learning through joint optimal training of sequences discrimination, clips discrimination, and order verification. Mining abundant positive/negative pairs inside sequence while learning inter-and intra-sequence semantic repre-sentations. Extensive experiments on the NTU RGB+D 60, UCLA and iMiGUE datasets present that CdCLR exhibits superior performance under various evaluation protocols and reaches state-of-the-art. Our code is available at https://github.com/Erich-G/CdCLRI.\",\"PeriodicalId\":269379,\"journal\":{\"name\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"60 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP56404.2022.10008837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种基于骨架的动作识别(CdCLR)的剪辑驱动对比学习。CdCLR没有将序列视为实例,而是从序列中提取片段作为新的实例。目的通过序列识别、片段识别和顺序验证的联合最优训练,实现内在监督引导的对比学习。挖掘序列内部丰富的正/负对,同时学习序列间和序列内的语义表示。在NTU RGB+ d60、UCLA和iMiGUE数据集上进行的大量实验表明,CdCLR在各种评估协议下表现出优异的性能,达到了最先进的水平。我们的代码可在https://github.com/Erich-G/CdCLRI上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CdCLR: Clip-Driven Contrastive Learning for Skeleton-Based Action Recognition
In this study, we propose a Clip-Driven Contrastive Learning for Skeleton-Based Action Recognition (CdCLR). In-stead of considering sequences as instances, CdCLR extracts clips from the sequences as new instances. Aim to implement inherent supervision-guided contrastive learning through joint optimal training of sequences discrimination, clips discrimination, and order verification. Mining abundant positive/negative pairs inside sequence while learning inter-and intra-sequence semantic repre-sentations. Extensive experiments on the NTU RGB+D 60, UCLA and iMiGUE datasets present that CdCLR exhibits superior performance under various evaluation protocols and reaches state-of-the-art. Our code is available at https://github.com/Erich-G/CdCLRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信