具有参数自动确定的正则化同步超分辨率

M. Zibetti, J. Mayer, F. Bazán
{"title":"具有参数自动确定的正则化同步超分辨率","authors":"M. Zibetti, J. Mayer, F. Bazán","doi":"10.1109/SIBGRAPI.2008.21","DOIUrl":null,"url":null,"abstract":"We derive a novel method for automatic determination of the regularization parameters applicable for the class of simultaneous super-resolution (SR) algorithms. The proposed method is based on the classical joint maximum a posteriori (JMAP) estimation technique, which is a fast alternative to estimate the parameters. Unfortunately, the classical JMAP technique can be unstable and generates multiple local minima. In order to stabilize the JMAP estimation, while achieving a cost function with a unique global solution, we derive an improved solution by modeling the JMAP hyper parameters with a gamma prior distribution. Experimental results illustrate the effectiveness of the proposed method for automatic determination of the regularization parameters for the simultaneous SR. We also contrast the proposed method to a reference method named KNOWN. KNOWN is a MAP based simultaneous SR algorithm where the parameters are fixed, either known a priori or extracted from the high-resolution frames which are not usually available in practice.","PeriodicalId":330622,"journal":{"name":"2008 XXI Brazilian Symposium on Computer Graphics and Image Processing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regularized Simultaneous Super-Resolution with Automatic Determination of the Parameters\",\"authors\":\"M. Zibetti, J. Mayer, F. Bazán\",\"doi\":\"10.1109/SIBGRAPI.2008.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a novel method for automatic determination of the regularization parameters applicable for the class of simultaneous super-resolution (SR) algorithms. The proposed method is based on the classical joint maximum a posteriori (JMAP) estimation technique, which is a fast alternative to estimate the parameters. Unfortunately, the classical JMAP technique can be unstable and generates multiple local minima. In order to stabilize the JMAP estimation, while achieving a cost function with a unique global solution, we derive an improved solution by modeling the JMAP hyper parameters with a gamma prior distribution. Experimental results illustrate the effectiveness of the proposed method for automatic determination of the regularization parameters for the simultaneous SR. We also contrast the proposed method to a reference method named KNOWN. KNOWN is a MAP based simultaneous SR algorithm where the parameters are fixed, either known a priori or extracted from the high-resolution frames which are not usually available in practice.\",\"PeriodicalId\":330622,\"journal\":{\"name\":\"2008 XXI Brazilian Symposium on Computer Graphics and Image Processing\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 XXI Brazilian Symposium on Computer Graphics and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2008.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 XXI Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2008.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种适用于同步超分辨率(SR)算法的正则化参数自动确定方法。该方法基于经典的联合极大后验(JMAP)估计技术,是一种快速的参数估计方法。不幸的是,经典的JMAP技术可能不稳定,并且会生成多个局部最小值。为了稳定JMAP估计,在获得具有唯一全局解的代价函数的同时,我们通过用gamma先验分布对JMAP超参数进行建模,推导出改进的解。实验结果表明,本文提出的方法能够有效地自动确定同步sr的正则化参数,并与已知的参考方法进行了对比。已知是一种基于MAP的同步SR算法,其中参数是固定的,要么是先验已知的,要么是从实际中通常无法获得的高分辨率帧中提取的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularized Simultaneous Super-Resolution with Automatic Determination of the Parameters
We derive a novel method for automatic determination of the regularization parameters applicable for the class of simultaneous super-resolution (SR) algorithms. The proposed method is based on the classical joint maximum a posteriori (JMAP) estimation technique, which is a fast alternative to estimate the parameters. Unfortunately, the classical JMAP technique can be unstable and generates multiple local minima. In order to stabilize the JMAP estimation, while achieving a cost function with a unique global solution, we derive an improved solution by modeling the JMAP hyper parameters with a gamma prior distribution. Experimental results illustrate the effectiveness of the proposed method for automatic determination of the regularization parameters for the simultaneous SR. We also contrast the proposed method to a reference method named KNOWN. KNOWN is a MAP based simultaneous SR algorithm where the parameters are fixed, either known a priori or extracted from the high-resolution frames which are not usually available in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信