基于对数正态随机波动模型的持续收入不平等贝叶斯估计

Haruhisa Nishino, Kazuhiko Kakamu, Takashi Oga
{"title":"基于对数正态随机波动模型的持续收入不平等贝叶斯估计","authors":"Haruhisa Nishino, Kazuhiko Kakamu, Takashi Oga","doi":"10.25071/1874-6322.31249","DOIUrl":null,"url":null,"abstract":"We estimate inequality including Gini coefficients using a lognormal parametric model for an investigation of persistent inequality. The asymptotic theory of selected order statistics enables us to construct a linear model based on grouped data. We extend the linear model to a dynamic model in terms of a stochastic volatility (SV) model. Using Japanese data we estimate the SV model by the Markov chain Monte Carlo (MCMC) method and exploit a model comparison to choose a best model, concluding that the model with SV is better fitted to the data than the model without SV. It indicates the persistent inequality.","PeriodicalId":142300,"journal":{"name":"Journal of Income Distribution®","volume":"53 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian estimation of Persistent Income Inequality by Lognormal Stochastic Volatility Model\",\"authors\":\"Haruhisa Nishino, Kazuhiko Kakamu, Takashi Oga\",\"doi\":\"10.25071/1874-6322.31249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We estimate inequality including Gini coefficients using a lognormal parametric model for an investigation of persistent inequality. The asymptotic theory of selected order statistics enables us to construct a linear model based on grouped data. We extend the linear model to a dynamic model in terms of a stochastic volatility (SV) model. Using Japanese data we estimate the SV model by the Markov chain Monte Carlo (MCMC) method and exploit a model comparison to choose a best model, concluding that the model with SV is better fitted to the data than the model without SV. It indicates the persistent inequality.\",\"PeriodicalId\":142300,\"journal\":{\"name\":\"Journal of Income Distribution®\",\"volume\":\"53 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Income Distribution®\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25071/1874-6322.31249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Income Distribution®","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25071/1874-6322.31249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们估计不平等包括基尼系数使用对数正态参数模型的调查持续不平等。选择阶统计量的渐近理论使我们能够构造基于分组数据的线性模型。我们用随机波动(SV)模型将线性模型扩展为动态模型。利用日本的数据,我们用马尔可夫链蒙特卡罗(MCMC)方法估计了SV模型,并利用模型比较来选择最佳模型,结论是有SV的模型比没有SV的模型更适合数据。它表明了持续的不平等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian estimation of Persistent Income Inequality by Lognormal Stochastic Volatility Model
We estimate inequality including Gini coefficients using a lognormal parametric model for an investigation of persistent inequality. The asymptotic theory of selected order statistics enables us to construct a linear model based on grouped data. We extend the linear model to a dynamic model in terms of a stochastic volatility (SV) model. Using Japanese data we estimate the SV model by the Markov chain Monte Carlo (MCMC) method and exploit a model comparison to choose a best model, concluding that the model with SV is better fitted to the data than the model without SV. It indicates the persistent inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信