光谱CT中的材料分解问题:一种迁移深度学习方法

J. Abascal, N. Ducros, V. Pronina, S. Bussod, A. Hauptmann, S. Arridge, P. Douek, F. Peyrin
{"title":"光谱CT中的材料分解问题:一种迁移深度学习方法","authors":"J. Abascal, N. Ducros, V. Pronina, S. Bussod, A. Hauptmann, S. Arridge, P. Douek, F. Peyrin","doi":"10.1109/ISBIWorkshops50223.2020.9153440","DOIUrl":null,"url":null,"abstract":"Current model-based variational methods used for solving the nonlinear material decomposition problem in spectral computed tomography rely on prior knowledge of the scanner energy response, but this is generally unknown or spatially varying. We propose a twostep deep transfer learning approach that can learn the energy response of the scanner and its variation across the detector pixels. First, we pretrain U-Net on a large data set assuming ideal data, and, second, we fine-tune the pretrained model using few data corresponding to a non-ideal scenario. We assess it on numerical thorax phantoms that comprise soft tissue, bone and kidneys marked with gadolinium, which are built from the kits19 dataset. We find that the proposed method solves the material decomposition problem without prior knowledge of the scanner energy response. We compare our approach to a regularized Gauss-Newton method and obtain a superior image quality.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"39 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Material Decomposition Problem in Spectral CT: A Transfer Deep Learning Approach\",\"authors\":\"J. Abascal, N. Ducros, V. Pronina, S. Bussod, A. Hauptmann, S. Arridge, P. Douek, F. Peyrin\",\"doi\":\"10.1109/ISBIWorkshops50223.2020.9153440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current model-based variational methods used for solving the nonlinear material decomposition problem in spectral computed tomography rely on prior knowledge of the scanner energy response, but this is generally unknown or spatially varying. We propose a twostep deep transfer learning approach that can learn the energy response of the scanner and its variation across the detector pixels. First, we pretrain U-Net on a large data set assuming ideal data, and, second, we fine-tune the pretrained model using few data corresponding to a non-ideal scenario. We assess it on numerical thorax phantoms that comprise soft tissue, bone and kidneys marked with gadolinium, which are built from the kits19 dataset. We find that the proposed method solves the material decomposition problem without prior knowledge of the scanner energy response. We compare our approach to a regularized Gauss-Newton method and obtain a superior image quality.\",\"PeriodicalId\":329356,\"journal\":{\"name\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"volume\":\"39 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目前用于解决光谱计算机断层扫描中非线性材料分解问题的基于模型的变分方法依赖于扫描仪能量响应的先验知识,但这通常是未知的或空间变化的。我们提出了一种两步深度迁移学习方法,可以学习扫描仪的能量响应及其在探测器像素上的变化。首先,我们在假设理想数据的大型数据集上对U-Net进行预训练,其次,我们使用与非理想场景对应的少量数据对预训练模型进行微调。我们根据kits19数据集构建的数字胸廓模型对其进行评估,该模型由软组织、骨骼和标有钆的肾脏组成。我们发现,该方法解决了材料分解问题,而不需要事先知道扫描仪的能量响应。我们将该方法与正则化高斯-牛顿方法进行了比较,获得了更好的图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material Decomposition Problem in Spectral CT: A Transfer Deep Learning Approach
Current model-based variational methods used for solving the nonlinear material decomposition problem in spectral computed tomography rely on prior knowledge of the scanner energy response, but this is generally unknown or spatially varying. We propose a twostep deep transfer learning approach that can learn the energy response of the scanner and its variation across the detector pixels. First, we pretrain U-Net on a large data set assuming ideal data, and, second, we fine-tune the pretrained model using few data corresponding to a non-ideal scenario. We assess it on numerical thorax phantoms that comprise soft tissue, bone and kidneys marked with gadolinium, which are built from the kits19 dataset. We find that the proposed method solves the material decomposition problem without prior knowledge of the scanner energy response. We compare our approach to a regularized Gauss-Newton method and obtain a superior image quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信