使用挖掘谓词对查询进行有效评估

S. Chaudhuri, Vivek R. Narasayya, Sunita Sarawagi
{"title":"使用挖掘谓词对查询进行有效评估","authors":"S. Chaudhuri, Vivek R. Narasayya, Sunita Sarawagi","doi":"10.1109/ICDE.2002.994772","DOIUrl":null,"url":null,"abstract":"Modern relational database systems are beginning to support ad-hoc queries on data mining models. In this paper, we explore novel techniques for optimizing queries that apply mining models to relational data. For such queries, we use the internal structure of the mining model to automatically derive traditional database predicates. We present algorithms for deriving such predicates for some popular discrete mining models: decision trees, naive Bayes, and clustering. Our experiments on a Microsoft SQL Server 2000 demonstrate that these derived predicates can significantly reduce the cost of evaluating such queries.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"26 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Efficient evaluation of queries with mining predicates\",\"authors\":\"S. Chaudhuri, Vivek R. Narasayya, Sunita Sarawagi\",\"doi\":\"10.1109/ICDE.2002.994772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern relational database systems are beginning to support ad-hoc queries on data mining models. In this paper, we explore novel techniques for optimizing queries that apply mining models to relational data. For such queries, we use the internal structure of the mining model to automatically derive traditional database predicates. We present algorithms for deriving such predicates for some popular discrete mining models: decision trees, naive Bayes, and clustering. Our experiments on a Microsoft SQL Server 2000 demonstrate that these derived predicates can significantly reduce the cost of evaluating such queries.\",\"PeriodicalId\":191529,\"journal\":{\"name\":\"Proceedings 18th International Conference on Data Engineering\",\"volume\":\"26 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 18th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2002.994772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

现代关系数据库系统开始支持对数据挖掘模型的特别查询。在本文中,我们探索了将挖掘模型应用于关系数据的查询优化的新技术。对于这样的查询,我们使用挖掘模型的内部结构来自动派生传统的数据库谓词。我们提出了为一些流行的离散挖掘模型推导这些谓词的算法:决策树、朴素贝叶斯和聚类。我们在Microsoft SQL Server 2000上的实验表明,这些派生谓词可以显著降低计算此类查询的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient evaluation of queries with mining predicates
Modern relational database systems are beginning to support ad-hoc queries on data mining models. In this paper, we explore novel techniques for optimizing queries that apply mining models to relational data. For such queries, we use the internal structure of the mining model to automatically derive traditional database predicates. We present algorithms for deriving such predicates for some popular discrete mining models: decision trees, naive Bayes, and clustering. Our experiments on a Microsoft SQL Server 2000 demonstrate that these derived predicates can significantly reduce the cost of evaluating such queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信