利用有意孤岛提高电力系统的恢复能力;二值遗传算法与基于深度学习方法的比较

Pol Paradell, Yannis Spyridis, Alba Colet, A. Ivanova, J. Domínguez-García, Achilleas Sesis, G. Efstathopoulos
{"title":"利用有意孤岛提高电力系统的恢复能力;二值遗传算法与基于深度学习方法的比较","authors":"Pol Paradell, Yannis Spyridis, Alba Colet, A. Ivanova, J. Domínguez-García, Achilleas Sesis, G. Efstathopoulos","doi":"10.1109/CSR51186.2021.9527918","DOIUrl":null,"url":null,"abstract":"Several algorithms combining qualitative and quantitative components are currently used for splitting a large interconnected power grid into islands as a measure to provide the best reconfiguration option when a fault appears. The aim of this article is to compare the clustering results of a binary genetic algorithm and a deep learning based method in order to identify the differences and to find in which cases it is rather better applicable each of the techniques.","PeriodicalId":253300,"journal":{"name":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"14 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Increasing resilience of power systems using intentional islanding; a comparison of Binary genetic algorithm and deep learning based method\",\"authors\":\"Pol Paradell, Yannis Spyridis, Alba Colet, A. Ivanova, J. Domínguez-García, Achilleas Sesis, G. Efstathopoulos\",\"doi\":\"10.1109/CSR51186.2021.9527918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several algorithms combining qualitative and quantitative components are currently used for splitting a large interconnected power grid into islands as a measure to provide the best reconfiguration option when a fault appears. The aim of this article is to compare the clustering results of a binary genetic algorithm and a deep learning based method in order to identify the differences and to find in which cases it is rather better applicable each of the techniques.\",\"PeriodicalId\":253300,\"journal\":{\"name\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"volume\":\"14 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSR51186.2021.9527918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR51186.2021.9527918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前有几种将定性和定量相结合的算法用于将大型互联电网分割成孤岛,作为在故障出现时提供最佳重构方案的一种措施。本文的目的是比较二元遗传算法和基于深度学习的方法的聚类结果,以识别差异,并找出在哪些情况下它更适用于每种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing resilience of power systems using intentional islanding; a comparison of Binary genetic algorithm and deep learning based method
Several algorithms combining qualitative and quantitative components are currently used for splitting a large interconnected power grid into islands as a measure to provide the best reconfiguration option when a fault appears. The aim of this article is to compare the clustering results of a binary genetic algorithm and a deep learning based method in order to identify the differences and to find in which cases it is rather better applicable each of the techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信