{"title":"基于二元支持向量机分类器集成的高光谱波段选择和分类的特征聚类和基于排序的坏聚类去除","authors":"Kishore Raju Kalidindi, Pardha Saradhi Varma Gottumukkala, Rajyalakshmi Davuluri","doi":"10.4018/IJITPM.2021100106","DOIUrl":null,"url":null,"abstract":"The rich spectral and spatial information of hyperspectral images are well known in the literature. The higher dimensionality of HSI creates Hughes's effect and increased computational complexity. This demands reduction for HS images as a pre-processing step. The necessary reduction of bands can be achieved by a proper band selection (BS) technique. The proposed features based unsupervised BS technique follows three subsequent steps: 1) for each band image statistical features are extracted, 2) bands are clustered with a k-means approach using the extracted features, 3) each cluster is ranked using mean entropy measure, 4) bad clusters are removed, and 5) for each selected cluster, a representative band is selected. The proposed method is validated over three widely used standard datasets and six state-of-the-art approaches using an ensemble of binary SVM classifiers. The obtained results strongly suggest the clustering is essential to reduce the redundancy, and removal of cluster is informative to keep the informative bands.","PeriodicalId":375999,"journal":{"name":"Int. J. Inf. Technol. Proj. Manag.","volume":"66 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Featured Clustering and Ranking-Based Bad Cluster Removal for Hyperspectral Band Selection and Classification Using Ensemble of Binary SVM Classifiers\",\"authors\":\"Kishore Raju Kalidindi, Pardha Saradhi Varma Gottumukkala, Rajyalakshmi Davuluri\",\"doi\":\"10.4018/IJITPM.2021100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rich spectral and spatial information of hyperspectral images are well known in the literature. The higher dimensionality of HSI creates Hughes's effect and increased computational complexity. This demands reduction for HS images as a pre-processing step. The necessary reduction of bands can be achieved by a proper band selection (BS) technique. The proposed features based unsupervised BS technique follows three subsequent steps: 1) for each band image statistical features are extracted, 2) bands are clustered with a k-means approach using the extracted features, 3) each cluster is ranked using mean entropy measure, 4) bad clusters are removed, and 5) for each selected cluster, a representative band is selected. The proposed method is validated over three widely used standard datasets and six state-of-the-art approaches using an ensemble of binary SVM classifiers. The obtained results strongly suggest the clustering is essential to reduce the redundancy, and removal of cluster is informative to keep the informative bands.\",\"PeriodicalId\":375999,\"journal\":{\"name\":\"Int. J. Inf. Technol. Proj. Manag.\",\"volume\":\"66 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Proj. Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJITPM.2021100106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Proj. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITPM.2021100106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Featured Clustering and Ranking-Based Bad Cluster Removal for Hyperspectral Band Selection and Classification Using Ensemble of Binary SVM Classifiers
The rich spectral and spatial information of hyperspectral images are well known in the literature. The higher dimensionality of HSI creates Hughes's effect and increased computational complexity. This demands reduction for HS images as a pre-processing step. The necessary reduction of bands can be achieved by a proper band selection (BS) technique. The proposed features based unsupervised BS technique follows three subsequent steps: 1) for each band image statistical features are extracted, 2) bands are clustered with a k-means approach using the extracted features, 3) each cluster is ranked using mean entropy measure, 4) bad clusters are removed, and 5) for each selected cluster, a representative band is selected. The proposed method is validated over three widely used standard datasets and six state-of-the-art approaches using an ensemble of binary SVM classifiers. The obtained results strongly suggest the clustering is essential to reduce the redundancy, and removal of cluster is informative to keep the informative bands.