改进CVE漏洞分类的特征工程技术评价

Mounesh Marali, D. R, Narendran Rajagopalan
{"title":"改进CVE漏洞分类的特征工程技术评价","authors":"Mounesh Marali, D. R, Narendran Rajagopalan","doi":"10.47392/irjash.2023.s026","DOIUrl":null,"url":null,"abstract":"This paper presents a three-stage approach to analyzing Common Vulnerabilities and Exposures (CVE) vulnerability datasets using machine learning techniques. In the first stage, K-Means clustering, and Linear discriminant analysis (LDA) topic modeling are applied to identify distinct clusters and topics within the dataset. The Elbow method is used to determine the optimal number of clusters for K-Means, while Grid Search is used to find the best topic model for LDA. After labeling 100 random samples from each cluster, the data is split into training and testing sets for use in various classification algorithms in the third stage. The paper contributes to the field by proposing a novel approach to analyzing CVE vulnerability datasets that combines clustering and classification techniques. The use of K-Means clustering and LDA topic modeling allows for the identification of distinct clusters and topics within the dataset, which can be used to improve the accuracy of classification algorithms. The study highlights the importance of using pre-trained word embeddings and dis-cusses the limitations of the proposed approach. Overall, the paper provides valuable insights into the analysis of CVE vulnerability datasets and","PeriodicalId":244861,"journal":{"name":"International Research Journal on Advanced Science Hub","volume":"86 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Feature Engineering Techniques for Improving CVE Vulnerability Classification\",\"authors\":\"Mounesh Marali, D. R, Narendran Rajagopalan\",\"doi\":\"10.47392/irjash.2023.s026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a three-stage approach to analyzing Common Vulnerabilities and Exposures (CVE) vulnerability datasets using machine learning techniques. In the first stage, K-Means clustering, and Linear discriminant analysis (LDA) topic modeling are applied to identify distinct clusters and topics within the dataset. The Elbow method is used to determine the optimal number of clusters for K-Means, while Grid Search is used to find the best topic model for LDA. After labeling 100 random samples from each cluster, the data is split into training and testing sets for use in various classification algorithms in the third stage. The paper contributes to the field by proposing a novel approach to analyzing CVE vulnerability datasets that combines clustering and classification techniques. The use of K-Means clustering and LDA topic modeling allows for the identification of distinct clusters and topics within the dataset, which can be used to improve the accuracy of classification algorithms. The study highlights the importance of using pre-trained word embeddings and dis-cusses the limitations of the proposed approach. Overall, the paper provides valuable insights into the analysis of CVE vulnerability datasets and\",\"PeriodicalId\":244861,\"journal\":{\"name\":\"International Research Journal on Advanced Science Hub\",\"volume\":\"86 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal on Advanced Science Hub\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47392/irjash.2023.s026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Science Hub","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjash.2023.s026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种使用机器学习技术分析常见漏洞和暴露(CVE)漏洞数据集的三阶段方法。在第一阶段,使用K-Means聚类和线性判别分析(LDA)主题建模来识别数据集中不同的聚类和主题。肘部法用于确定K-Means的最优簇数,网格搜索用于寻找LDA的最佳主题模型。在每个聚类中标记100个随机样本后,将数据分成训练集和测试集,用于第三阶段的各种分类算法。本文提出了一种结合聚类和分类技术分析CVE漏洞数据集的新方法,为该领域做出了贡献。K-Means聚类和LDA主题建模的使用允许在数据集中识别不同的聚类和主题,这可以用来提高分类算法的准确性。该研究强调了使用预训练词嵌入的重要性,并讨论了所提出方法的局限性。总体而言,本文为CVE漏洞数据集的分析提供了有价值的见解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Feature Engineering Techniques for Improving CVE Vulnerability Classification
This paper presents a three-stage approach to analyzing Common Vulnerabilities and Exposures (CVE) vulnerability datasets using machine learning techniques. In the first stage, K-Means clustering, and Linear discriminant analysis (LDA) topic modeling are applied to identify distinct clusters and topics within the dataset. The Elbow method is used to determine the optimal number of clusters for K-Means, while Grid Search is used to find the best topic model for LDA. After labeling 100 random samples from each cluster, the data is split into training and testing sets for use in various classification algorithms in the third stage. The paper contributes to the field by proposing a novel approach to analyzing CVE vulnerability datasets that combines clustering and classification techniques. The use of K-Means clustering and LDA topic modeling allows for the identification of distinct clusters and topics within the dataset, which can be used to improve the accuracy of classification algorithms. The study highlights the importance of using pre-trained word embeddings and dis-cusses the limitations of the proposed approach. Overall, the paper provides valuable insights into the analysis of CVE vulnerability datasets and
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信