Matthew M. Frazier, Shaayal Kumar, Kostadin Damevski, L. Pollock
{"title":"调查用户对与软件相关的探索性网络搜索会话代理的感知","authors":"Matthew M. Frazier, Shaayal Kumar, Kostadin Damevski, L. Pollock","doi":"10.1145/3510455.3512778","DOIUrl":null,"url":null,"abstract":"Conversational agents that respond to user information requests through a natural conversation have the potential to revolutionize how we acquire new information on the Web (i.e., perform exploratory Web searches). Recent advances to conversational search agents use popular Web search engines as a back-end and sophisticated AI algorithms to maintain context, automatically generate search queries, and summarize results into utterances. While showing impressive results on general topics, the potential of this technology for software engineering is unclear. In this paper, we study the potential of conversational search agents to aid software developers as they acquire new knowledge. We also obtain user perceptions of how far the most recent generation of such systems (e.g., Facebook’s BlenderBot2) has come in its ability to serve software developers. Our study indicates that users find conversational agents helpful in gaining useful information for software-related exploratory search; however, their perceptions also indicate a large gap between expectations and current state of the art tools, especially in providing high-quality information. Participant responses provide directions for future work. CCS CONCEPTS• General and reference $\\rightarrow$Empirical studies.","PeriodicalId":416186,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"108 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating User Perceptions of Conversational Agents for Software-related ExploratoryWeb Search\",\"authors\":\"Matthew M. Frazier, Shaayal Kumar, Kostadin Damevski, L. Pollock\",\"doi\":\"10.1145/3510455.3512778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversational agents that respond to user information requests through a natural conversation have the potential to revolutionize how we acquire new information on the Web (i.e., perform exploratory Web searches). Recent advances to conversational search agents use popular Web search engines as a back-end and sophisticated AI algorithms to maintain context, automatically generate search queries, and summarize results into utterances. While showing impressive results on general topics, the potential of this technology for software engineering is unclear. In this paper, we study the potential of conversational search agents to aid software developers as they acquire new knowledge. We also obtain user perceptions of how far the most recent generation of such systems (e.g., Facebook’s BlenderBot2) has come in its ability to serve software developers. Our study indicates that users find conversational agents helpful in gaining useful information for software-related exploratory search; however, their perceptions also indicate a large gap between expectations and current state of the art tools, especially in providing high-quality information. Participant responses provide directions for future work. CCS CONCEPTS• General and reference $\\\\rightarrow$Empirical studies.\",\"PeriodicalId\":416186,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"volume\":\"108 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510455.3512778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510455.3512778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating User Perceptions of Conversational Agents for Software-related ExploratoryWeb Search
Conversational agents that respond to user information requests through a natural conversation have the potential to revolutionize how we acquire new information on the Web (i.e., perform exploratory Web searches). Recent advances to conversational search agents use popular Web search engines as a back-end and sophisticated AI algorithms to maintain context, automatically generate search queries, and summarize results into utterances. While showing impressive results on general topics, the potential of this technology for software engineering is unclear. In this paper, we study the potential of conversational search agents to aid software developers as they acquire new knowledge. We also obtain user perceptions of how far the most recent generation of such systems (e.g., Facebook’s BlenderBot2) has come in its ability to serve software developers. Our study indicates that users find conversational agents helpful in gaining useful information for software-related exploratory search; however, their perceptions also indicate a large gap between expectations and current state of the art tools, especially in providing high-quality information. Participant responses provide directions for future work. CCS CONCEPTS• General and reference $\rightarrow$Empirical studies.