Arindam Bit, A. Bissoyi, S. K. Sinha, P. Patra, S. Saha
{"title":"石墨烯改性不锈钢与钛合金治疗假体周围感染抑制生物膜形成的比较研究","authors":"Arindam Bit, A. Bissoyi, S. K. Sinha, P. Patra, S. Saha","doi":"10.1109/SBEC.2016.75","DOIUrl":null,"url":null,"abstract":"Colonization of bacteria such as Staphylococus or microbial growth forming layer of bio-film on the surface of implants inhibits osteo-integration on the surface of implants, and simultaneously resists the host defence mechanism on these bacteria. It leads to prognosis of surgical intervention. Titanium based implant (Ti6Al4V) provides the surface for enhanced osteo-integration, and it is biocompatible. But adhesion of bio-film on the surface of Ti-based implant never had been restricted. However, in case of low-cost metallic implant like SS 316, corrosion is another critical phenomenon. Graphene based composite multi-layer coating is therefore introduced on both Ti and SS 316 based implant using electrophoretic deposition process. Multi-layer thickness of graphene is ensured by Raman Spectroscopy. Coated implants made up of both types of metal are tested in simulated body fluid (SBF) for invitro study, and at invivo condition. Integration of graphene in micro-environment with enhancement of osteo-integration, and inhibition of bio-film adhesion and corrosion phenomena was characterised by Adhesion assay, Biofilm assay. Tests reveal enhanced osteogenic differentiation. Simultaneously, it shows restrict bio-film formation, corrosion activity, preventing bacterial adhesion and biofilm formation on both metallic implants.","PeriodicalId":196856,"journal":{"name":"2016 32nd Southern Biomedical Engineering Conference (SBEC)","volume":"23 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Inhibition of Bio-film Formation by Graphene-Modified Stainless Steel and Titanium Alloy for the Treatment of Periprosthetic Infection: A Comparative Study\",\"authors\":\"Arindam Bit, A. Bissoyi, S. K. Sinha, P. Patra, S. Saha\",\"doi\":\"10.1109/SBEC.2016.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colonization of bacteria such as Staphylococus or microbial growth forming layer of bio-film on the surface of implants inhibits osteo-integration on the surface of implants, and simultaneously resists the host defence mechanism on these bacteria. It leads to prognosis of surgical intervention. Titanium based implant (Ti6Al4V) provides the surface for enhanced osteo-integration, and it is biocompatible. But adhesion of bio-film on the surface of Ti-based implant never had been restricted. However, in case of low-cost metallic implant like SS 316, corrosion is another critical phenomenon. Graphene based composite multi-layer coating is therefore introduced on both Ti and SS 316 based implant using electrophoretic deposition process. Multi-layer thickness of graphene is ensured by Raman Spectroscopy. Coated implants made up of both types of metal are tested in simulated body fluid (SBF) for invitro study, and at invivo condition. Integration of graphene in micro-environment with enhancement of osteo-integration, and inhibition of bio-film adhesion and corrosion phenomena was characterised by Adhesion assay, Biofilm assay. Tests reveal enhanced osteogenic differentiation. Simultaneously, it shows restrict bio-film formation, corrosion activity, preventing bacterial adhesion and biofilm formation on both metallic implants.\",\"PeriodicalId\":196856,\"journal\":{\"name\":\"2016 32nd Southern Biomedical Engineering Conference (SBEC)\",\"volume\":\"23 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 32nd Southern Biomedical Engineering Conference (SBEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBEC.2016.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 32nd Southern Biomedical Engineering Conference (SBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBEC.2016.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Inhibition of Bio-film Formation by Graphene-Modified Stainless Steel and Titanium Alloy for the Treatment of Periprosthetic Infection: A Comparative Study
Colonization of bacteria such as Staphylococus or microbial growth forming layer of bio-film on the surface of implants inhibits osteo-integration on the surface of implants, and simultaneously resists the host defence mechanism on these bacteria. It leads to prognosis of surgical intervention. Titanium based implant (Ti6Al4V) provides the surface for enhanced osteo-integration, and it is biocompatible. But adhesion of bio-film on the surface of Ti-based implant never had been restricted. However, in case of low-cost metallic implant like SS 316, corrosion is another critical phenomenon. Graphene based composite multi-layer coating is therefore introduced on both Ti and SS 316 based implant using electrophoretic deposition process. Multi-layer thickness of graphene is ensured by Raman Spectroscopy. Coated implants made up of both types of metal are tested in simulated body fluid (SBF) for invitro study, and at invivo condition. Integration of graphene in micro-environment with enhancement of osteo-integration, and inhibition of bio-film adhesion and corrosion phenomena was characterised by Adhesion assay, Biofilm assay. Tests reveal enhanced osteogenic differentiation. Simultaneously, it shows restrict bio-film formation, corrosion activity, preventing bacterial adhesion and biofilm formation on both metallic implants.