盲多用户检测的独立分量分析

A. Kuh, Xiaohong Gong
{"title":"盲多用户检测的独立分量分析","authors":"A. Kuh, Xiaohong Gong","doi":"10.1109/ISIT.2000.866544","DOIUrl":null,"url":null,"abstract":"We apply a novel signal processing method based on independent component analysis (ICA) to blind multiuser receivers. ICA is well suited for blind multiuser detection problems as the criterion used to separate signals is a mutual information minimization principle which attempts to separate independent signals from mixed signals. When the cross-correlations between signature sequences are large, ICA has a better performance than decorrelating receivers and linear MMSE receivers.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"57 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Independent component analysis for blind multiuser detections\",\"authors\":\"A. Kuh, Xiaohong Gong\",\"doi\":\"10.1109/ISIT.2000.866544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply a novel signal processing method based on independent component analysis (ICA) to blind multiuser receivers. ICA is well suited for blind multiuser detection problems as the criterion used to separate signals is a mutual information minimization principle which attempts to separate independent signals from mixed signals. When the cross-correlations between signature sequences are large, ICA has a better performance than decorrelating receivers and linear MMSE receivers.\",\"PeriodicalId\":108752,\"journal\":{\"name\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"volume\":\"57 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2000.866544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于独立分量分析(ICA)的盲多用户接收机信号处理方法。ICA非常适合于盲多用户检测问题,因为用于分离信号的准则是一种互信息最小化原则,它试图从混合信号中分离独立信号。当特征序列间相互关联较大时,ICA的性能优于去相关接收机和线性MMSE接收机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent component analysis for blind multiuser detections
We apply a novel signal processing method based on independent component analysis (ICA) to blind multiuser receivers. ICA is well suited for blind multiuser detection problems as the criterion used to separate signals is a mutual information minimization principle which attempts to separate independent signals from mixed signals. When the cross-correlations between signature sequences are large, ICA has a better performance than decorrelating receivers and linear MMSE receivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信