{"title":"关于零斜广义幂级数自反环","authors":"E. Ali","doi":"10.37418/amsj.12.1.17","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring and $(S, \\leq)$ a strictly ordered monoid. In this paper, we deal with a new approaches to reflexive property for rings by using nilpotent elements. In this direction we introduce the notions of $(S, \\omega)$-reflexive and $(S, \\omega)$-$nil$-reflexive. Examples are given that, $(S, \\omega)$-$nil$-reflexive is not $(S, \\omega)$-reflexive. Under some suitable conditions, we proved that, if $R$ is a right $APP$-ring, then $R$ is $(S, \\omega)$-reflexive and $R$ be a semiprime ring with the $ACC$ on left annihilator ideals, $(S, \\leq)$ an $a.n.u.p.$-monoid, then $R$ is $(S, \\omega)$-reflexive. Also, we proved that, $R$ is $(S, \\omega)$-$nil$-reflexive if and only if $R/I$ is $(S, \\overline{\\omega})$-$nil$-reflexive, $R$ is $(S, \\omega)$-$nil$-reflexive if and only if $T_{n}(R)$ is $(S, \\omega)$-$nil$-reflexive and we will show that, if $R$ is a right Noetherian ring, then $R$ is $(S, \\omega)$-$nil$-reflexive. Moreover, we investigate ring extensions which have roles in ring theory.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"10 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON NIL SKEW GENERALIZED POWER SERIES REFLEXIVE RINGS\",\"authors\":\"E. Ali\",\"doi\":\"10.37418/amsj.12.1.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a ring and $(S, \\\\leq)$ a strictly ordered monoid. In this paper, we deal with a new approaches to reflexive property for rings by using nilpotent elements. In this direction we introduce the notions of $(S, \\\\omega)$-reflexive and $(S, \\\\omega)$-$nil$-reflexive. Examples are given that, $(S, \\\\omega)$-$nil$-reflexive is not $(S, \\\\omega)$-reflexive. Under some suitable conditions, we proved that, if $R$ is a right $APP$-ring, then $R$ is $(S, \\\\omega)$-reflexive and $R$ be a semiprime ring with the $ACC$ on left annihilator ideals, $(S, \\\\leq)$ an $a.n.u.p.$-monoid, then $R$ is $(S, \\\\omega)$-reflexive. Also, we proved that, $R$ is $(S, \\\\omega)$-$nil$-reflexive if and only if $R/I$ is $(S, \\\\overline{\\\\omega})$-$nil$-reflexive, $R$ is $(S, \\\\omega)$-$nil$-reflexive if and only if $T_{n}(R)$ is $(S, \\\\omega)$-$nil$-reflexive and we will show that, if $R$ is a right Noetherian ring, then $R$ is $(S, \\\\omega)$-$nil$-reflexive. Moreover, we investigate ring extensions which have roles in ring theory.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"10 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.1.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON NIL SKEW GENERALIZED POWER SERIES REFLEXIVE RINGS
Let $R$ be a ring and $(S, \leq)$ a strictly ordered monoid. In this paper, we deal with a new approaches to reflexive property for rings by using nilpotent elements. In this direction we introduce the notions of $(S, \omega)$-reflexive and $(S, \omega)$-$nil$-reflexive. Examples are given that, $(S, \omega)$-$nil$-reflexive is not $(S, \omega)$-reflexive. Under some suitable conditions, we proved that, if $R$ is a right $APP$-ring, then $R$ is $(S, \omega)$-reflexive and $R$ be a semiprime ring with the $ACC$ on left annihilator ideals, $(S, \leq)$ an $a.n.u.p.$-monoid, then $R$ is $(S, \omega)$-reflexive. Also, we proved that, $R$ is $(S, \omega)$-$nil$-reflexive if and only if $R/I$ is $(S, \overline{\omega})$-$nil$-reflexive, $R$ is $(S, \omega)$-$nil$-reflexive if and only if $T_{n}(R)$ is $(S, \omega)$-$nil$-reflexive and we will show that, if $R$ is a right Noetherian ring, then $R$ is $(S, \omega)$-$nil$-reflexive. Moreover, we investigate ring extensions which have roles in ring theory.