{"title":"AlGaN/GaN-on-Si结构的垂直泄漏/击穿机制","authors":"Chunhua Zhou, Q. Jiang, Sen Huang, K. J. Chen","doi":"10.1109/ISPSD.2012.6229069","DOIUrl":null,"url":null,"abstract":"In this paper, we studied the vertical leakage/breakdown mechanisms in AlGaN/GaN structures grown on low resistivity p-type (111) Si substrate by temperature-dependent current-voltage measurements. We suggested that the top-to-substrate vertical leakage/breakdown is dominated by the space-charge-limited current (SCLC) conduction mechanism involving both acceptor and donor traps in buffer/transition layer. Based on temperature-dependent transient backgating measurements, the acceptor level and donor level were determined to be at EV+543 meV and EC-616 meV, respectively.","PeriodicalId":371298,"journal":{"name":"2012 24th International Symposium on Power Semiconductor Devices and ICs","volume":"6 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Vertical leakage/breakdown mechanisms in AlGaN/GaN-on-Si structures\",\"authors\":\"Chunhua Zhou, Q. Jiang, Sen Huang, K. J. Chen\",\"doi\":\"10.1109/ISPSD.2012.6229069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we studied the vertical leakage/breakdown mechanisms in AlGaN/GaN structures grown on low resistivity p-type (111) Si substrate by temperature-dependent current-voltage measurements. We suggested that the top-to-substrate vertical leakage/breakdown is dominated by the space-charge-limited current (SCLC) conduction mechanism involving both acceptor and donor traps in buffer/transition layer. Based on temperature-dependent transient backgating measurements, the acceptor level and donor level were determined to be at EV+543 meV and EC-616 meV, respectively.\",\"PeriodicalId\":371298,\"journal\":{\"name\":\"2012 24th International Symposium on Power Semiconductor Devices and ICs\",\"volume\":\"6 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 24th International Symposium on Power Semiconductor Devices and ICs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2012.6229069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th International Symposium on Power Semiconductor Devices and ICs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2012.6229069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vertical leakage/breakdown mechanisms in AlGaN/GaN-on-Si structures
In this paper, we studied the vertical leakage/breakdown mechanisms in AlGaN/GaN structures grown on low resistivity p-type (111) Si substrate by temperature-dependent current-voltage measurements. We suggested that the top-to-substrate vertical leakage/breakdown is dominated by the space-charge-limited current (SCLC) conduction mechanism involving both acceptor and donor traps in buffer/transition layer. Based on temperature-dependent transient backgating measurements, the acceptor level and donor level were determined to be at EV+543 meV and EC-616 meV, respectively.