{"title":"-功率半导体器件","authors":"J. Hudgins, R. D. Doncker","doi":"10.1201/9781315222363-23","DOIUrl":null,"url":null,"abstract":"Power semiconductor devices constitute the heart of modern power electronic apparatus. They are used in power electronic converters in the form of a matrix of on-off switches, and help to convert power from ac-to-dc (rectifier), dc-to-dc (chopper), dc-to-ac (inverter), and ac-to-ac at the same (ac controller) or different frequencies (cycloconverter). The switching mode power conversion gives high efficiency, but the disadvantage is that due to the nonlinearity of switches, harmonics are generated at both the supply and load sides. The switches are not ideal, and they have conduction and turn-on and turn-off switching losses. Converters are widely used in applications such as heating and lighting controls, ac and dc power supplies, electrochemical processes, dc and ac motor drives, static VAR generation, active harmonic filtering, etc. Although the cost of power semiconductor devices in power electronic equipment may hardly exceed 20–30 percent, the total equipment cost and performance may be highly influenced by the characteristics of the devices. An engineer designing equipment must understand the devices and their characteristics thoroughly in order to design efficient, reliable, and cost-effective systems with optimum performance. It is interesting to note that the modern technology evolution in power electronics has generally followed the evolution of power semiconductor devices. The advancement of microelectronics has greatly contributed to the knowledge of power device materials, processing, fabrication, packaging, modeling, and simulation. Today’s power semiconductor devices are almost exclusively based on silicon material and can be classified as follows:","PeriodicalId":268247,"journal":{"name":"The Electric Power Engineering Handbook - Five Volume Set","volume":"79 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"- Power Semiconductor Devices\",\"authors\":\"J. Hudgins, R. D. Doncker\",\"doi\":\"10.1201/9781315222363-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power semiconductor devices constitute the heart of modern power electronic apparatus. They are used in power electronic converters in the form of a matrix of on-off switches, and help to convert power from ac-to-dc (rectifier), dc-to-dc (chopper), dc-to-ac (inverter), and ac-to-ac at the same (ac controller) or different frequencies (cycloconverter). The switching mode power conversion gives high efficiency, but the disadvantage is that due to the nonlinearity of switches, harmonics are generated at both the supply and load sides. The switches are not ideal, and they have conduction and turn-on and turn-off switching losses. Converters are widely used in applications such as heating and lighting controls, ac and dc power supplies, electrochemical processes, dc and ac motor drives, static VAR generation, active harmonic filtering, etc. Although the cost of power semiconductor devices in power electronic equipment may hardly exceed 20–30 percent, the total equipment cost and performance may be highly influenced by the characteristics of the devices. An engineer designing equipment must understand the devices and their characteristics thoroughly in order to design efficient, reliable, and cost-effective systems with optimum performance. It is interesting to note that the modern technology evolution in power electronics has generally followed the evolution of power semiconductor devices. The advancement of microelectronics has greatly contributed to the knowledge of power device materials, processing, fabrication, packaging, modeling, and simulation. Today’s power semiconductor devices are almost exclusively based on silicon material and can be classified as follows:\",\"PeriodicalId\":268247,\"journal\":{\"name\":\"The Electric Power Engineering Handbook - Five Volume Set\",\"volume\":\"79 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Electric Power Engineering Handbook - Five Volume Set\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315222363-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Electric Power Engineering Handbook - Five Volume Set","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315222363-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power semiconductor devices constitute the heart of modern power electronic apparatus. They are used in power electronic converters in the form of a matrix of on-off switches, and help to convert power from ac-to-dc (rectifier), dc-to-dc (chopper), dc-to-ac (inverter), and ac-to-ac at the same (ac controller) or different frequencies (cycloconverter). The switching mode power conversion gives high efficiency, but the disadvantage is that due to the nonlinearity of switches, harmonics are generated at both the supply and load sides. The switches are not ideal, and they have conduction and turn-on and turn-off switching losses. Converters are widely used in applications such as heating and lighting controls, ac and dc power supplies, electrochemical processes, dc and ac motor drives, static VAR generation, active harmonic filtering, etc. Although the cost of power semiconductor devices in power electronic equipment may hardly exceed 20–30 percent, the total equipment cost and performance may be highly influenced by the characteristics of the devices. An engineer designing equipment must understand the devices and their characteristics thoroughly in order to design efficient, reliable, and cost-effective systems with optimum performance. It is interesting to note that the modern technology evolution in power electronics has generally followed the evolution of power semiconductor devices. The advancement of microelectronics has greatly contributed to the knowledge of power device materials, processing, fabrication, packaging, modeling, and simulation. Today’s power semiconductor devices are almost exclusively based on silicon material and can be classified as follows: