一类率为1/3的拟循环LDPC码的代数设计

R. M. Tanner
{"title":"一类率为1/3的拟循环LDPC码的代数设计","authors":"R. M. Tanner","doi":"10.1109/GLOBECOM46510.2021.9685071","DOIUrl":null,"url":null,"abstract":"An algebraic design procedure is given for constructing rate 1/3 quasi-cyclic LDPC codes with Tanner graphs with girth 6. Parity check matrices consist of 2 × 3 block matrices of circulants of size p, a prime, exhibiting invariance under the action of a subgroup of the multiplicative group mod p. The group invariance converts the problem of avoiding short cycles into that of choosing orbits to solve connectivity constraints. A series of very low density H matrix codes constructed show surprisingly good minimum distances.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"100 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes\",\"authors\":\"R. M. Tanner\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algebraic design procedure is given for constructing rate 1/3 quasi-cyclic LDPC codes with Tanner graphs with girth 6. Parity check matrices consist of 2 × 3 block matrices of circulants of size p, a prime, exhibiting invariance under the action of a subgroup of the multiplicative group mod p. The group invariance converts the problem of avoiding short cycles into that of choosing orbits to solve connectivity constraints. A series of very low density H matrix codes constructed show surprisingly good minimum distances.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"100 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了构造周长为6的Tanner图的速率为1/3的拟循环LDPC码的代数设计方法。奇偶校验矩阵由大小为p的素数的2 × 3块循环矩阵组成,在乘群模p的子群作用下表现出不变性。群不变性将避免短循环的问题转化为选择轨道来解决连通性约束的问题。构造的一系列非常低密度的H矩阵码显示出令人惊讶的良好的最小距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes
An algebraic design procedure is given for constructing rate 1/3 quasi-cyclic LDPC codes with Tanner graphs with girth 6. Parity check matrices consist of 2 × 3 block matrices of circulants of size p, a prime, exhibiting invariance under the action of a subgroup of the multiplicative group mod p. The group invariance converts the problem of avoiding short cycles into that of choosing orbits to solve connectivity constraints. A series of very low density H matrix codes constructed show surprisingly good minimum distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信