SDAFT:一种用于并行BLAST的新型可扩展数据访问框架

Jiangling Yin, Junyao Zhang, Jun Wang, Wu-chun Feng
{"title":"SDAFT:一种用于并行BLAST的新型可扩展数据访问框架","authors":"Jiangling Yin, Junyao Zhang, Jun Wang, Wu-chun Feng","doi":"10.1145/2534645.2534647","DOIUrl":null,"url":null,"abstract":"To run search tasks in a parallel and load-balanced fashion, existing parallel BLAST schemes such as mpiBLAST introduce a data initialization preparation stage to move database fragments from the shared storage to local cluster nodes. Unfortunately, a quickly growing sequence database becomes too heavy to move in the network in today's big data era.\n In this paper, we develop a Scalable Data Access Framework (SDAFT) to solve the problem. It employs a distributed file system (DFS) to provide scalable data access for parallel sequence searches. SDAFT consists of two inter-locked components: 1) a data centric load-balanced scheduler (DC-scheduler) to enforce data-process locality and 2) a translation layer to translate conventional parallel I/O operations into HDFS I/O. By experimenting our SDAFT prototype system with real-world database and queries at a wide variety of computing platforms, we found that SDAFT can reduce I/O cost by a factor of 4 to 10 and double the overall execution performance as compared with existing schemes.","PeriodicalId":166804,"journal":{"name":"International Symposium on Design and Implementation of Symbolic Computation Systems","volume":"239 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"SDAFT: a novel scalable data access framework for parallel BLAST\",\"authors\":\"Jiangling Yin, Junyao Zhang, Jun Wang, Wu-chun Feng\",\"doi\":\"10.1145/2534645.2534647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To run search tasks in a parallel and load-balanced fashion, existing parallel BLAST schemes such as mpiBLAST introduce a data initialization preparation stage to move database fragments from the shared storage to local cluster nodes. Unfortunately, a quickly growing sequence database becomes too heavy to move in the network in today's big data era.\\n In this paper, we develop a Scalable Data Access Framework (SDAFT) to solve the problem. It employs a distributed file system (DFS) to provide scalable data access for parallel sequence searches. SDAFT consists of two inter-locked components: 1) a data centric load-balanced scheduler (DC-scheduler) to enforce data-process locality and 2) a translation layer to translate conventional parallel I/O operations into HDFS I/O. By experimenting our SDAFT prototype system with real-world database and queries at a wide variety of computing platforms, we found that SDAFT can reduce I/O cost by a factor of 4 to 10 and double the overall execution performance as compared with existing schemes.\",\"PeriodicalId\":166804,\"journal\":{\"name\":\"International Symposium on Design and Implementation of Symbolic Computation Systems\",\"volume\":\"239 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Design and Implementation of Symbolic Computation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534645.2534647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Design and Implementation of Symbolic Computation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534645.2534647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

为了以并行和负载均衡的方式运行搜索任务,现有的并行BLAST方案(如mpiBLAST)引入了一个数据初始化准备阶段,将数据库片段从共享存储移动到本地集群节点。不幸的是,在今天的大数据时代,一个快速增长的序列数据库变得过于沉重,无法在网络中移动。在本文中,我们开发了一个可扩展数据访问框架(SDAFT)来解决这个问题。它采用分布式文件系统(DFS)为并行序列搜索提供可扩展的数据访问。SDAFT由两个互锁的组件组成:1)一个以数据为中心的负载均衡调度器(DC-scheduler),用于执行数据过程的局域性;2)一个转换层,用于将传统的并行I/O操作转换为HDFS I/O。通过在各种计算平台上对我们的SDAFT原型系统进行真实数据库和查询实验,我们发现与现有方案相比,SDAFT可以将I/O成本降低4到10倍,并将整体执行性能提高一倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDAFT: a novel scalable data access framework for parallel BLAST
To run search tasks in a parallel and load-balanced fashion, existing parallel BLAST schemes such as mpiBLAST introduce a data initialization preparation stage to move database fragments from the shared storage to local cluster nodes. Unfortunately, a quickly growing sequence database becomes too heavy to move in the network in today's big data era. In this paper, we develop a Scalable Data Access Framework (SDAFT) to solve the problem. It employs a distributed file system (DFS) to provide scalable data access for parallel sequence searches. SDAFT consists of two inter-locked components: 1) a data centric load-balanced scheduler (DC-scheduler) to enforce data-process locality and 2) a translation layer to translate conventional parallel I/O operations into HDFS I/O. By experimenting our SDAFT prototype system with real-world database and queries at a wide variety of computing platforms, we found that SDAFT can reduce I/O cost by a factor of 4 to 10 and double the overall execution performance as compared with existing schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信