基于多核学习的LBP和HOG融合红外人脸识别

Zhihua Xie, Peng-Chao Jiang, Shuai Zhang
{"title":"基于多核学习的LBP和HOG融合红外人脸识别","authors":"Zhihua Xie, Peng-Chao Jiang, Shuai Zhang","doi":"10.1109/ICIS.2017.7959973","DOIUrl":null,"url":null,"abstract":"Local binary pattern (LBP) has limitation in extracting the edge and direction information, which is vital to infrared face recognition. A new infrared face recognition algorithm fusion of LBP and histogram of oriented gradients (HOG) is proposed. First, LBP operator is adopted to extract the texture feature of an infrared face, and then the edge features of the original infrared face are extracted by using HOG operator. Finally, multiple kernel learning (MKL) is applied to fuse the texture features and edge features. Experiments are conducted on infrared face database of variable ambient temperature. The results show that the fusion of LBP and HOG perform better than traditional LBP or HOG features for infrared face recognition, the proposed method is more robust to ambient temperatures.","PeriodicalId":301467,"journal":{"name":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","volume":"268 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Fusion of LBP and HOG using multiple kernel learning for infrared face recognition\",\"authors\":\"Zhihua Xie, Peng-Chao Jiang, Shuai Zhang\",\"doi\":\"10.1109/ICIS.2017.7959973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local binary pattern (LBP) has limitation in extracting the edge and direction information, which is vital to infrared face recognition. A new infrared face recognition algorithm fusion of LBP and histogram of oriented gradients (HOG) is proposed. First, LBP operator is adopted to extract the texture feature of an infrared face, and then the edge features of the original infrared face are extracted by using HOG operator. Finally, multiple kernel learning (MKL) is applied to fuse the texture features and edge features. Experiments are conducted on infrared face database of variable ambient temperature. The results show that the fusion of LBP and HOG perform better than traditional LBP or HOG features for infrared face recognition, the proposed method is more robust to ambient temperatures.\",\"PeriodicalId\":301467,\"journal\":{\"name\":\"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"268 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2017.7959973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2017.7959973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

局部二值模式(LBP)在提取边缘和方向信息方面存在局限性,而这对红外人脸识别至关重要。提出了一种融合LBP和定向梯度直方图(HOG)的红外人脸识别算法。首先采用LBP算子提取红外人脸的纹理特征,然后采用HOG算子提取原始红外人脸的边缘特征。最后,采用多核学习(multiple kernel learning, MKL)融合纹理特征和边缘特征。对变环境温度下的红外人脸库进行了实验研究。结果表明,LBP和HOG特征融合的红外人脸识别效果优于传统的LBP或HOG特征,对环境温度的鲁棒性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of LBP and HOG using multiple kernel learning for infrared face recognition
Local binary pattern (LBP) has limitation in extracting the edge and direction information, which is vital to infrared face recognition. A new infrared face recognition algorithm fusion of LBP and histogram of oriented gradients (HOG) is proposed. First, LBP operator is adopted to extract the texture feature of an infrared face, and then the edge features of the original infrared face are extracted by using HOG operator. Finally, multiple kernel learning (MKL) is applied to fuse the texture features and edge features. Experiments are conducted on infrared face database of variable ambient temperature. The results show that the fusion of LBP and HOG perform better than traditional LBP or HOG features for infrared face recognition, the proposed method is more robust to ambient temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信