{"title":"基于多核学习的LBP和HOG融合红外人脸识别","authors":"Zhihua Xie, Peng-Chao Jiang, Shuai Zhang","doi":"10.1109/ICIS.2017.7959973","DOIUrl":null,"url":null,"abstract":"Local binary pattern (LBP) has limitation in extracting the edge and direction information, which is vital to infrared face recognition. A new infrared face recognition algorithm fusion of LBP and histogram of oriented gradients (HOG) is proposed. First, LBP operator is adopted to extract the texture feature of an infrared face, and then the edge features of the original infrared face are extracted by using HOG operator. Finally, multiple kernel learning (MKL) is applied to fuse the texture features and edge features. Experiments are conducted on infrared face database of variable ambient temperature. The results show that the fusion of LBP and HOG perform better than traditional LBP or HOG features for infrared face recognition, the proposed method is more robust to ambient temperatures.","PeriodicalId":301467,"journal":{"name":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","volume":"268 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Fusion of LBP and HOG using multiple kernel learning for infrared face recognition\",\"authors\":\"Zhihua Xie, Peng-Chao Jiang, Shuai Zhang\",\"doi\":\"10.1109/ICIS.2017.7959973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local binary pattern (LBP) has limitation in extracting the edge and direction information, which is vital to infrared face recognition. A new infrared face recognition algorithm fusion of LBP and histogram of oriented gradients (HOG) is proposed. First, LBP operator is adopted to extract the texture feature of an infrared face, and then the edge features of the original infrared face are extracted by using HOG operator. Finally, multiple kernel learning (MKL) is applied to fuse the texture features and edge features. Experiments are conducted on infrared face database of variable ambient temperature. The results show that the fusion of LBP and HOG perform better than traditional LBP or HOG features for infrared face recognition, the proposed method is more robust to ambient temperatures.\",\"PeriodicalId\":301467,\"journal\":{\"name\":\"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"268 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2017.7959973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2017.7959973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fusion of LBP and HOG using multiple kernel learning for infrared face recognition
Local binary pattern (LBP) has limitation in extracting the edge and direction information, which is vital to infrared face recognition. A new infrared face recognition algorithm fusion of LBP and histogram of oriented gradients (HOG) is proposed. First, LBP operator is adopted to extract the texture feature of an infrared face, and then the edge features of the original infrared face are extracted by using HOG operator. Finally, multiple kernel learning (MKL) is applied to fuse the texture features and edge features. Experiments are conducted on infrared face database of variable ambient temperature. The results show that the fusion of LBP and HOG perform better than traditional LBP or HOG features for infrared face recognition, the proposed method is more robust to ambient temperatures.