{"title":"可压缩欧拉方程的新计算格式","authors":"T. Nakazawa, T. Nonomura","doi":"10.23967/wccm-apcom.2022.081","DOIUrl":null,"url":null,"abstract":". In this paper, numerical demonstrations of a modified compressible Euler system are shown, where the bubble function element stabilization method together with adaptive mesh refinement is introduced for increasing numerical stability and numerical accuracy. For a test case, NACA0012 is selected as a domain of interest, and numerical results using finite elements of P1 – P1b – P1 and P2 – P2b – P2 for density – velocity – pressure were compared at AOA=1.25 and Mach number 0.8. As a result, the shock wave is not found on the upper – end and the lower – end of NACA0012 in the former, and on the other hand the latter is adequate numerical result and relative errors of Cl, Cd with previous study are 1.197% and 0.15376%. The mathematical model is much simpler than the compressible Euler equation, because they are advection equations for a density, a velocity, and a pressure with each external forces. Therefore, the material derivative is considered for time stepping, and the characteristic curve method can be used for decreasing calculation cost.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"21 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New calculation scheme for compressible Euler equation\",\"authors\":\"T. Nakazawa, T. Nonomura\",\"doi\":\"10.23967/wccm-apcom.2022.081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, numerical demonstrations of a modified compressible Euler system are shown, where the bubble function element stabilization method together with adaptive mesh refinement is introduced for increasing numerical stability and numerical accuracy. For a test case, NACA0012 is selected as a domain of interest, and numerical results using finite elements of P1 – P1b – P1 and P2 – P2b – P2 for density – velocity – pressure were compared at AOA=1.25 and Mach number 0.8. As a result, the shock wave is not found on the upper – end and the lower – end of NACA0012 in the former, and on the other hand the latter is adequate numerical result and relative errors of Cl, Cd with previous study are 1.197% and 0.15376%. The mathematical model is much simpler than the compressible Euler equation, because they are advection equations for a density, a velocity, and a pressure with each external forces. Therefore, the material derivative is considered for time stepping, and the characteristic curve method can be used for decreasing calculation cost.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"21 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New calculation scheme for compressible Euler equation
. In this paper, numerical demonstrations of a modified compressible Euler system are shown, where the bubble function element stabilization method together with adaptive mesh refinement is introduced for increasing numerical stability and numerical accuracy. For a test case, NACA0012 is selected as a domain of interest, and numerical results using finite elements of P1 – P1b – P1 and P2 – P2b – P2 for density – velocity – pressure were compared at AOA=1.25 and Mach number 0.8. As a result, the shock wave is not found on the upper – end and the lower – end of NACA0012 in the former, and on the other hand the latter is adequate numerical result and relative errors of Cl, Cd with previous study are 1.197% and 0.15376%. The mathematical model is much simpler than the compressible Euler equation, because they are advection equations for a density, a velocity, and a pressure with each external forces. Therefore, the material derivative is considered for time stepping, and the characteristic curve method can be used for decreasing calculation cost.