基于同步的目录协议替代方案

He Huang, Lei Liu, Nan Yuan, Wei Lin, Fenglong Song, Junchao Zhang, Dongrui Fan
{"title":"基于同步的目录协议替代方案","authors":"He Huang, Lei Liu, Nan Yuan, Wei Lin, Fenglong Song, Junchao Zhang, Dongrui Fan","doi":"10.1109/ISPA.2009.25","DOIUrl":null,"url":null,"abstract":"The efficient support of cache coherence is extremely important to design and implement many-core processors. In this paper, we propose a synchronization-based coherence (SBC) protocol to efficiently support cache coherence for shared memory many-core architectures. The unique feature of our scheme is that it doesn’t use directory at all. Inspired by scope consistency memory model, our protocol maintains coherence at synchronization point. Within critical section, processor cores record write-sets (which lines have been written in critical section) with bloom-filter function. When the core releases the lock, the write-set is transferred to a synchronization manager. When another core acquires the same lock, it gets the write-set from the synchronization manager and invalidates stale data in its local cache. Experimental results show that the SBC outperforms by averages of 5% in execution time across a suite of scientific applications. At the mean time, the SBC is more cost-effective comparing to directory-based protocol that requires large amount of hardware resource and huge design verification effort.","PeriodicalId":346815,"journal":{"name":"2009 IEEE International Symposium on Parallel and Distributed Processing with Applications","volume":"37 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Synchronization-Based Alternative to Directory Protocol\",\"authors\":\"He Huang, Lei Liu, Nan Yuan, Wei Lin, Fenglong Song, Junchao Zhang, Dongrui Fan\",\"doi\":\"10.1109/ISPA.2009.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient support of cache coherence is extremely important to design and implement many-core processors. In this paper, we propose a synchronization-based coherence (SBC) protocol to efficiently support cache coherence for shared memory many-core architectures. The unique feature of our scheme is that it doesn’t use directory at all. Inspired by scope consistency memory model, our protocol maintains coherence at synchronization point. Within critical section, processor cores record write-sets (which lines have been written in critical section) with bloom-filter function. When the core releases the lock, the write-set is transferred to a synchronization manager. When another core acquires the same lock, it gets the write-set from the synchronization manager and invalidates stale data in its local cache. Experimental results show that the SBC outperforms by averages of 5% in execution time across a suite of scientific applications. At the mean time, the SBC is more cost-effective comparing to directory-based protocol that requires large amount of hardware resource and huge design verification effort.\",\"PeriodicalId\":346815,\"journal\":{\"name\":\"2009 IEEE International Symposium on Parallel and Distributed Processing with Applications\",\"volume\":\"37 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Parallel and Distributed Processing with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2009.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Parallel and Distributed Processing with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高效的缓存一致性支持对多核处理器的设计和实现至关重要。在本文中,我们提出了一种基于同步的一致性(SBC)协议,以有效地支持共享内存多核架构的缓存一致性。我们方案的独特之处在于它根本不使用目录。受作用域一致性内存模型的启发,我们的协议在同步点保持一致性。在临界区内,处理器内核使用bloom-filter功能记录写集(哪些行已经在临界区写入)。当内核释放锁时,写集被转移到同步管理器。当另一个核心获得相同的锁时,它从同步管理器获得写集,并使其本地缓存中的陈旧数据无效。实验结果表明,在一系列科学应用中,SBC的执行时间平均优于5%。同时,与需要大量硬件资源和大量设计验证工作的基于目录的协议相比,SBC更具成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Synchronization-Based Alternative to Directory Protocol
The efficient support of cache coherence is extremely important to design and implement many-core processors. In this paper, we propose a synchronization-based coherence (SBC) protocol to efficiently support cache coherence for shared memory many-core architectures. The unique feature of our scheme is that it doesn’t use directory at all. Inspired by scope consistency memory model, our protocol maintains coherence at synchronization point. Within critical section, processor cores record write-sets (which lines have been written in critical section) with bloom-filter function. When the core releases the lock, the write-set is transferred to a synchronization manager. When another core acquires the same lock, it gets the write-set from the synchronization manager and invalidates stale data in its local cache. Experimental results show that the SBC outperforms by averages of 5% in execution time across a suite of scientific applications. At the mean time, the SBC is more cost-effective comparing to directory-based protocol that requires large amount of hardware resource and huge design verification effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信