大森林和哪里“部分”适合他们

Andrea Damiani, Emanuele Del Sozzo, M. Santambrogio
{"title":"大森林和哪里“部分”适合他们","authors":"Andrea Damiani, Emanuele Del Sozzo, M. Santambrogio","doi":"10.1109/ASP-DAC52403.2022.9712534","DOIUrl":null,"url":null,"abstract":"The Artificial Intelligence of Things (AIoT) calls for on-site Machine Learning inference to overcome the instability in latency and availability of networks. Thus, hardware acceleration is paramount for reaching the Cloud's modeling performance within an embedded device's resources. In this paper, we propose Entree, the first automatic design flow for deploying the inference of Decision Tree (DT) ensembles over Field-Programmable Gate Arrays (FPGAs) at the network's edge. It exploits dynamic partial reconfiguration on modern FPGA-enabled Systems-on-a-Chip (SoCs) to accelerate arbitrarily large DT ensembles at a latency a hundred times stabler than software alternatives. Plus, given Entree's suitability for both hardware designers and non-hardware-savvy developers, we believe it has the potential of helping data scientists to develop a non-Cloud-centric AIoT.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"101 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Large Forests and Where to “Partially” Fit Them\",\"authors\":\"Andrea Damiani, Emanuele Del Sozzo, M. Santambrogio\",\"doi\":\"10.1109/ASP-DAC52403.2022.9712534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Artificial Intelligence of Things (AIoT) calls for on-site Machine Learning inference to overcome the instability in latency and availability of networks. Thus, hardware acceleration is paramount for reaching the Cloud's modeling performance within an embedded device's resources. In this paper, we propose Entree, the first automatic design flow for deploying the inference of Decision Tree (DT) ensembles over Field-Programmable Gate Arrays (FPGAs) at the network's edge. It exploits dynamic partial reconfiguration on modern FPGA-enabled Systems-on-a-Chip (SoCs) to accelerate arbitrarily large DT ensembles at a latency a hundred times stabler than software alternatives. Plus, given Entree's suitability for both hardware designers and non-hardware-savvy developers, we believe it has the potential of helping data scientists to develop a non-Cloud-centric AIoT.\",\"PeriodicalId\":239260,\"journal\":{\"name\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"101 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC52403.2022.9712534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC52403.2022.9712534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

物联网人工智能(AIoT)需要现场机器学习推理来克服网络延迟和可用性的不稳定性。因此,硬件加速对于在嵌入式设备的资源中达到云的建模性能至关重要。在本文中,我们提出了Entree,这是第一个在网络边缘的现场可编程门阵列(fpga)上部署决策树(DT)集成推理的自动设计流程。它利用现代fpga支持的单片系统(soc)上的动态部分重构,以比软件替代方案稳定100倍的延迟加速任意大型DT集成。另外,考虑到Entree对硬件设计师和非硬件开发人员的适用性,我们相信它有潜力帮助数据科学家开发一个非云中心的AIoT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Forests and Where to “Partially” Fit Them
The Artificial Intelligence of Things (AIoT) calls for on-site Machine Learning inference to overcome the instability in latency and availability of networks. Thus, hardware acceleration is paramount for reaching the Cloud's modeling performance within an embedded device's resources. In this paper, we propose Entree, the first automatic design flow for deploying the inference of Decision Tree (DT) ensembles over Field-Programmable Gate Arrays (FPGAs) at the network's edge. It exploits dynamic partial reconfiguration on modern FPGA-enabled Systems-on-a-Chip (SoCs) to accelerate arbitrarily large DT ensembles at a latency a hundred times stabler than software alternatives. Plus, given Entree's suitability for both hardware designers and non-hardware-savvy developers, we believe it has the potential of helping data scientists to develop a non-Cloud-centric AIoT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信