面向多目标跨领域推荐的异构图表示学习

Tendai Mukande
{"title":"面向多目标跨领域推荐的异构图表示学习","authors":"Tendai Mukande","doi":"10.1145/3523227.3547426","DOIUrl":null,"url":null,"abstract":"This paper discusses the current challenges in modeling real world recommendation scenarios and proposes the development of a unified Heterogeneous Graph Representation Learning framework for multi-target Cross-Domain recommendation (HGRL4CDR). A shared graph with user-item interactions from multiple domains is proposed as a way to provide an effective representation learning layer and unify the modelling of various heterogeneous data. A heterogeneous graph transformer network will be integrated to the representation learning model to prioritize the most important neighbours, and the proposed model would be able to capture complex information as well as adapt to dynamic changes in the data using matrix perturbation. Using the real world Amazon Review dataset, experiments would be conducted on multi-target cross domain recommendation.","PeriodicalId":443279,"journal":{"name":"Proceedings of the 16th ACM Conference on Recommender Systems","volume":"6 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Graph Representation Learning for multi-target Cross-Domain Recommendation\",\"authors\":\"Tendai Mukande\",\"doi\":\"10.1145/3523227.3547426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the current challenges in modeling real world recommendation scenarios and proposes the development of a unified Heterogeneous Graph Representation Learning framework for multi-target Cross-Domain recommendation (HGRL4CDR). A shared graph with user-item interactions from multiple domains is proposed as a way to provide an effective representation learning layer and unify the modelling of various heterogeneous data. A heterogeneous graph transformer network will be integrated to the representation learning model to prioritize the most important neighbours, and the proposed model would be able to capture complex information as well as adapt to dynamic changes in the data using matrix perturbation. Using the real world Amazon Review dataset, experiments would be conducted on multi-target cross domain recommendation.\",\"PeriodicalId\":443279,\"journal\":{\"name\":\"Proceedings of the 16th ACM Conference on Recommender Systems\",\"volume\":\"6 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3523227.3547426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523227.3547426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了当前在真实世界推荐场景建模方面面临的挑战,并提出了一种用于多目标跨域推荐(HGRL4CDR)的统一异构图表示学习框架的开发。提出了一种包含多域用户-项目交互的共享图,作为一种有效的表示学习层和统一各种异构数据建模的方法。将异构图变换网络集成到表示学习模型中,优先考虑最重要的邻居,所提出的模型将能够捕获复杂信息,并使用矩阵摄动适应数据的动态变化。利用真实的Amazon Review数据集,进行多目标跨域推荐实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Graph Representation Learning for multi-target Cross-Domain Recommendation
This paper discusses the current challenges in modeling real world recommendation scenarios and proposes the development of a unified Heterogeneous Graph Representation Learning framework for multi-target Cross-Domain recommendation (HGRL4CDR). A shared graph with user-item interactions from multiple domains is proposed as a way to provide an effective representation learning layer and unify the modelling of various heterogeneous data. A heterogeneous graph transformer network will be integrated to the representation learning model to prioritize the most important neighbours, and the proposed model would be able to capture complex information as well as adapt to dynamic changes in the data using matrix perturbation. Using the real world Amazon Review dataset, experiments would be conducted on multi-target cross domain recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信