平衡和/或树和线性阈值函数

Hervé Fournier, Danièle Gardy, Antoine Genitrini
{"title":"平衡和/或树和线性阈值函数","authors":"Hervé Fournier, Danièle Gardy, Antoine Genitrini","doi":"10.1137/1.9781611972993.8","DOIUrl":null,"url":null,"abstract":"We consider random balanced Boolean formulas, built on the two connectives and and or, and a fixed number of variables. The probability distribution induced on Boolean functions is shown to have a limit when letting the depth of these formulas grow to infinity. By investigating how this limiting distribution depends on the two underlying probability distributions, over the connectives and over the Boolean variables, we prove that its support is made of linear threshold functions, and give the speed of convergence towards this limiting distribution.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"12 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Balanced And/Or Trees and Linear Threshold Functions\",\"authors\":\"Hervé Fournier, Danièle Gardy, Antoine Genitrini\",\"doi\":\"10.1137/1.9781611972993.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider random balanced Boolean formulas, built on the two connectives and and or, and a fixed number of variables. The probability distribution induced on Boolean functions is shown to have a limit when letting the depth of these formulas grow to infinity. By investigating how this limiting distribution depends on the two underlying probability distributions, over the connectives and over the Boolean variables, we prove that its support is made of linear threshold functions, and give the speed of convergence towards this limiting distribution.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"12 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611972993.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972993.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们考虑随机平衡布尔公式,建立在两个连接词and和or和固定数量的变量上。当这些公式的深度增长到无穷大时,布尔函数上的概率分布有一个极限。通过研究这个极限分布如何依赖于两个潜在的概率分布,即连接项和布尔变量,我们证明了它的支持是由线性阈值函数构成的,并给出了收敛到这个极限分布的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balanced And/Or Trees and Linear Threshold Functions
We consider random balanced Boolean formulas, built on the two connectives and and or, and a fixed number of variables. The probability distribution induced on Boolean functions is shown to have a limit when letting the depth of these formulas grow to infinity. By investigating how this limiting distribution depends on the two underlying probability distributions, over the connectives and over the Boolean variables, we prove that its support is made of linear threshold functions, and give the speed of convergence towards this limiting distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信