Fraser K. Coutts, K. Thompson, Stephan Weiss, I. Proudler
{"title":"大型宽带传感器阵列分治顺序矩阵对角化性能分析","authors":"Fraser K. Coutts, K. Thompson, Stephan Weiss, I. Proudler","doi":"10.1109/SiPS.2017.8109976","DOIUrl":null,"url":null,"abstract":"A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. Inspired by recent work towards a low complexity divide-and-conquer PEVD algorithm, this paper analyses the performance of this algorithm — named divide-and-conquer sequential matrix diagonalisation (DC-SMD) — for applications involving broadband sensor arrays of various dimensionalities. We demonstrate that by using the DC-SMD algorithm instead of a traditional alternative, PEVD complexity and execution time can be significantly reduced. This reduction is shown to be especially impactful for broadband multichannel problems involving large arrays.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"125 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays\",\"authors\":\"Fraser K. Coutts, K. Thompson, Stephan Weiss, I. Proudler\",\"doi\":\"10.1109/SiPS.2017.8109976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. Inspired by recent work towards a low complexity divide-and-conquer PEVD algorithm, this paper analyses the performance of this algorithm — named divide-and-conquer sequential matrix diagonalisation (DC-SMD) — for applications involving broadband sensor arrays of various dimensionalities. We demonstrate that by using the DC-SMD algorithm instead of a traditional alternative, PEVD complexity and execution time can be significantly reduced. This reduction is shown to be especially impactful for broadband multichannel problems involving large arrays.\",\"PeriodicalId\":251688,\"journal\":{\"name\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"125 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2017.8109976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8109976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays
A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. Inspired by recent work towards a low complexity divide-and-conquer PEVD algorithm, this paper analyses the performance of this algorithm — named divide-and-conquer sequential matrix diagonalisation (DC-SMD) — for applications involving broadband sensor arrays of various dimensionalities. We demonstrate that by using the DC-SMD algorithm instead of a traditional alternative, PEVD complexity and execution time can be significantly reduced. This reduction is shown to be especially impactful for broadband multichannel problems involving large arrays.