端到端ASR的字级波束搜索译码校正算法

S. Zitha, Prabhakar Venkata Tamma
{"title":"端到端ASR的字级波束搜索译码校正算法","authors":"S. Zitha, Prabhakar Venkata Tamma","doi":"10.1145/3486001.3486223","DOIUrl":null,"url":null,"abstract":"A key challenge in resource-constrained speech recognition applications is the unavailability of a large, domain-specific audio corpus to train the models. In such scenarios, models may not be exposed to a wide range of domain-specific words and phrases. In this work, we propose an approach to improve the in-domain automatic speech recognition results using our word-level beam search decoding and correction algorithm (WLBS). We use a token-based language model to mitigate the data sparsity and the out of vocabulary issues in the corpus. We evaluate the proposed approach for airplane-cabin specific announcements use case. The experimental results show that the WLBS algorithm with its handling of misspellings and missing words achieves better performance than state-of-the-art beam search decoding and n-gram LMs. We report a WER of 11.48% on our airplane-cabin announcement test corpus.","PeriodicalId":266754,"journal":{"name":"Proceedings of the First International Conference on AI-ML Systems","volume":"44 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Word-level beam search decoding and correction algorithm (WLBS) for end-to-end ASR\",\"authors\":\"S. Zitha, Prabhakar Venkata Tamma\",\"doi\":\"10.1145/3486001.3486223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key challenge in resource-constrained speech recognition applications is the unavailability of a large, domain-specific audio corpus to train the models. In such scenarios, models may not be exposed to a wide range of domain-specific words and phrases. In this work, we propose an approach to improve the in-domain automatic speech recognition results using our word-level beam search decoding and correction algorithm (WLBS). We use a token-based language model to mitigate the data sparsity and the out of vocabulary issues in the corpus. We evaluate the proposed approach for airplane-cabin specific announcements use case. The experimental results show that the WLBS algorithm with its handling of misspellings and missing words achieves better performance than state-of-the-art beam search decoding and n-gram LMs. We report a WER of 11.48% on our airplane-cabin announcement test corpus.\",\"PeriodicalId\":266754,\"journal\":{\"name\":\"Proceedings of the First International Conference on AI-ML Systems\",\"volume\":\"44 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Conference on AI-ML Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3486001.3486223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Conference on AI-ML Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486001.3486223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在资源有限的语音识别应用中,一个关键的挑战是缺乏一个大型的、特定领域的音频语料库来训练模型。在这样的场景中,模型可能不会暴露在大量特定于领域的单词和短语中。在这项工作中,我们提出了一种使用我们的词级波束搜索解码和校正算法(WLBS)来改善域内自动语音识别结果的方法。我们使用基于标记的语言模型来缓解语料库中的数据稀疏性和词汇不足问题。我们对机舱特定公告用例的建议方法进行了评估。实验结果表明,WLBS算法在处理拼写错误和缺词方面比目前最先进的波束搜索解码和n-gram LMs算法取得了更好的性能。在我们的机舱广播测试语料库中,我们报告了11.48%的WER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Word-level beam search decoding and correction algorithm (WLBS) for end-to-end ASR
A key challenge in resource-constrained speech recognition applications is the unavailability of a large, domain-specific audio corpus to train the models. In such scenarios, models may not be exposed to a wide range of domain-specific words and phrases. In this work, we propose an approach to improve the in-domain automatic speech recognition results using our word-level beam search decoding and correction algorithm (WLBS). We use a token-based language model to mitigate the data sparsity and the out of vocabulary issues in the corpus. We evaluate the proposed approach for airplane-cabin specific announcements use case. The experimental results show that the WLBS algorithm with its handling of misspellings and missing words achieves better performance than state-of-the-art beam search decoding and n-gram LMs. We report a WER of 11.48% on our airplane-cabin announcement test corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信