基于最大熵的图像大小调整在生物医学成像中的应用

P. B. Kao, B. Nutter
{"title":"基于最大熵的图像大小调整在生物医学成像中的应用","authors":"P. B. Kao, B. Nutter","doi":"10.1109/CBMS.2006.46","DOIUrl":null,"url":null,"abstract":"Subsampling algorithms are applied to resize digital images to a lower resolution for display and transmission applications where the pixel count of the display mechanism is lower than the pixel count of the image acquisition method. Unfortunately, interpolation-based resizing methods change the color information and attenuate a specific range of high-frequency components from which the human visual system derives significant response. The described maximum entropy algorithm (MEA) provides that, as an image goes through subsampling, locally informative pixels are retained by analyzing the pixel neighboringhoods. The selected pixels are inserted directly in the output image, and color information is therefore preserved. From subjective observation and object evaluation using the entropy, contrast, and PSNR, MEA effectively maintains important features and color information and demonstrates better resizing performance than interpolation-based methods for some applications. Furthermore, the computational expense is suitable for real-time implementation","PeriodicalId":208693,"journal":{"name":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","volume":"2 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Maximum Entropy-Based Image Resizing to Biomedical Imaging\",\"authors\":\"P. B. Kao, B. Nutter\",\"doi\":\"10.1109/CBMS.2006.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subsampling algorithms are applied to resize digital images to a lower resolution for display and transmission applications where the pixel count of the display mechanism is lower than the pixel count of the image acquisition method. Unfortunately, interpolation-based resizing methods change the color information and attenuate a specific range of high-frequency components from which the human visual system derives significant response. The described maximum entropy algorithm (MEA) provides that, as an image goes through subsampling, locally informative pixels are retained by analyzing the pixel neighboringhoods. The selected pixels are inserted directly in the output image, and color information is therefore preserved. From subjective observation and object evaluation using the entropy, contrast, and PSNR, MEA effectively maintains important features and color information and demonstrates better resizing performance than interpolation-based methods for some applications. Furthermore, the computational expense is suitable for real-time implementation\",\"PeriodicalId\":208693,\"journal\":{\"name\":\"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)\",\"volume\":\"2 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2006.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2006.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

应用子采样算法将数字图像调整为较低的分辨率,用于显示机构的像素数低于图像采集方法的像素数的显示和传输应用。不幸的是,基于插值的调整大小方法改变了颜色信息,并减弱了人类视觉系统从中获得显著响应的特定高频成分范围。所描述的最大熵算法(MEA)通过分析像素邻域,在图像进行子采样时保留局部信息像素。所选像素直接插入到输出图像中,因此保留了颜色信息。从主观观察和使用熵、对比度和PSNR的对象评估来看,MEA有效地保留了重要的特征和颜色信息,并且在某些应用中表现出比基于插值的方法更好的调整大小性能。此外,计算费用适合实时实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Maximum Entropy-Based Image Resizing to Biomedical Imaging
Subsampling algorithms are applied to resize digital images to a lower resolution for display and transmission applications where the pixel count of the display mechanism is lower than the pixel count of the image acquisition method. Unfortunately, interpolation-based resizing methods change the color information and attenuate a specific range of high-frequency components from which the human visual system derives significant response. The described maximum entropy algorithm (MEA) provides that, as an image goes through subsampling, locally informative pixels are retained by analyzing the pixel neighboringhoods. The selected pixels are inserted directly in the output image, and color information is therefore preserved. From subjective observation and object evaluation using the entropy, contrast, and PSNR, MEA effectively maintains important features and color information and demonstrates better resizing performance than interpolation-based methods for some applications. Furthermore, the computational expense is suitable for real-time implementation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信